Full metadata record

DC Field Value Language
dc.contributor.authorAli, Ghulam-
dc.contributor.authorIslam, Mobinul-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorNam, Kyung-Wan-
dc.contributor.authorChung, Kyung Yoon-
dc.date.accessioned2024-01-19T22:32:15Z-
dc.date.available2024-01-19T22:32:15Z-
dc.date.created2021-09-03-
dc.date.issued2018-06-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121259-
dc.description.abstractFor the realization of sodium-ion batteries (SIBs), high-performance anode materials are urgently required with the advantages of being low-cost and environment-friendly. In this work, layered-type NaVO3 is prepared by the simple solid-state route with a rod-like morphology and used as an anode material for SIBs. The NaVO3 electrode exhibits a high specific capacity of 196 mA h g(-1) during the first cycle and retains a capacity of 125 mA h g(-1) at the 80th cycle with a high Coulombic efficiency of >99%, demonstrating high reversibility. The sodium diffusion coefficient in NaVO3 is measured using electrochemical impedance spectroscopy (1.368 x 10(-15) cm(2) s(-1)), the galvanostatic intermittent titration technique (1.15715 x 10(-13) cm(2) s(-1)), and cyclic voltammetry (2.7935 x 10(-16 )cm(2) s(-1)). Furthermore, the reaction mechanism during the sodiation/desodiation process is investigated using in situ X-ray diffraction and X-ray absorption near the edge structure analysis, which suggests the formation of an amorphous-like phase and reversible redox reaction of V4+ <--> V5+, respectively.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectCATHODE MATERIAL-
dc.subjectHIGH-CAPACITY-
dc.subjectINTERCALATION-
dc.subjectPERFORMANCE-
dc.subjectSTORAGE-
dc.subjectOXIDE-
dc.subjectNANOCOMPOSITE-
dc.subjectELECTROLYTE-
dc.subjectCOMPOSITE-
dc.titleProbing the Sodium Insertion/Extraction Mechanism in a Layered NaVO3 Anode Material-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.8b03571-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.22, pp.18717 - 18725-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.citation.number22-
dc.citation.startPage18717-
dc.citation.endPage18725-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000434895500031-
dc.identifier.scopusid2-s2.0-85046740969-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusCATHODE MATERIAL-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordAuthorNaVO3-
dc.subject.keywordAuthorsolid-state method-
dc.subject.keywordAuthorkinetic study-
dc.subject.keywordAuthorsodium diffusion coefficient-
dc.subject.keywordAuthoramorphous-like-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE