Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell
- Authors
- Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo; Yang, Sungeun; Kim, Jiwhan; Lim, Jinkyu; Yoo, Sung Jong; Lee, Hyunjoo
- Issue Date
- 2018-06-05
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- APPLIED CATALYSIS B-ENVIRONMENTAL, v.225, pp.530 - 537
- Abstract
- Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mg(pt)(-1)) at 0.9 V (vs RHE) for the ORR, compared to commercial PVC (0.22 A mg(pt)(-1)). Single-cell performance and electrochemical impedance spectroscopy (EIS) were also tested. The PtNi@Pt catalysts showed enhanced current density of 3.1 A cm(-2) at 0.6 V in O-2 flow while the commercial Pt/C had the value of 2.5 A cm(-2). After 30,000 cycles of the accelerated degradation test (ADT), the PtNi@Pt still showed better performance than the commercial Pt/C in a single-cell system. The Pt layers deposition could enhance the catalytic performance and durability of octahedral PtNi nanoparticles.
- Keywords
- OXYGEN REDUCTION REACTION; BY-LAYER DEPOSITION; PLATINUM MONOLAYER; O-2 REDUCTION; ALLOY NANOPARTICLES; ENHANCED ACTIVITY; NI ALLOY; ELECTROCATALYSTS; DURABILITY; CATHODE; OXYGEN REDUCTION REACTION; BY-LAYER DEPOSITION; PLATINUM MONOLAYER; O-2 REDUCTION; ALLOY NANOPARTICLES; ENHANCED ACTIVITY; NI ALLOY; ELECTROCATALYSTS; DURABILITY; CATHODE; Proton exchange membrane fuel cells; Oxygen reduction reaction; Pt overlayers; Octahedral PtNi; Durability
- ISSN
- 0926-3373
- URI
- https://pubs.kist.re.kr/handle/201004/121261
- DOI
- 10.1016/j.apcatb.2017.12.016
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.