Full metadata record

DC Field Value Language
dc.contributor.authorJoh, Dong Woo-
dc.contributor.authorCha, Areum-
dc.contributor.authorPark, Jeong Hwa-
dc.contributor.authorKim, Kyeong Joon-
dc.contributor.authorBae, Kyung Taek-
dc.contributor.authorKim, Doyeub-
dc.contributor.authorChoi, Young Ki-
dc.contributor.authorAn, Hyegsoon-
dc.contributor.authorShin, Ji Su-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorLee, Kang Taek-
dc.date.accessioned2024-01-19T22:32:59Z-
dc.date.available2024-01-19T22:32:59Z-
dc.date.created2021-09-03-
dc.date.issued2018-06-
dc.identifier.issn2574-0970-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121296-
dc.description.abstractComposite cathodes comprising nanoscale powders are expected to impart with high specific surface area and triple phase boundary (TPB) density, which will lead to better performance. However, uniformly mixing nanosized heterophase powders remains a challenge due to their high surface energy and thus ease with which they agglomerate into their individual phases during the mixing and sintering processes. In this study, we successfully synthesized La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF)-Gd0.1Ce0.9O1.95 (GDC) composite cathode nanoscale powders via an in situ sol-gel process. High-angle annular dark field scanning transmission electron microscopy analysis of in situ prepared LSCF-GDC composite powders revealed that both the LSCF and GDC phases were uniformly distributed with a particle size of similar to 90 nm without cation intermixing. The in situ LSCF-GDC cathode sintered on a GDC electrolyte showed a low polarization resistance of 0.044 Omega cm(2) at 750 degrees C. The active TPB density and the specific two phase (LSCF/pore) boundary area of the in situ LSCF-GDC cathode were quantified via a 3D reconstruction technique, resulting in 12.7 mu m(-2) and 2.9 mu m(-1) respectively. These values are significantly higher as compared to reported values of other LSCF-GDC cathodes, demonstrating highly well-distributed LSCF and GDC at the nanoscale. A solid oxide fuel cell employing the in situ LSCF-GDC cathode yielded excellent power output of similar to 1.2 W cm(-2) at 750 degrees C and high stability up to 500 h.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCOMPOSITE CATHODE-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectDOUBLE-PEROVSKITE-
dc.subjectDOPED CERIA-
dc.subjectANODE-
dc.subjectELECTROLYTE-
dc.titleIn Situ Synthesized La0.6Sr0.4Co0.2Fe0.8O3-delta-Gd0.1Ce0.9O1.95 Article Nanocomposite Cathodes via a Modified Sol-Gel Process for Intermediate Temperature Solid Oxide Fuel Cells-
dc.typeArticle-
dc.identifier.doi10.1021/acsanm.8b00566-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED NANO MATERIALS, v.1, no.6, pp.2934 - 2942-
dc.citation.titleACS APPLIED NANO MATERIALS-
dc.citation.volume1-
dc.citation.number6-
dc.citation.startPage2934-
dc.citation.endPage2942-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000461400700056-
dc.identifier.scopusid2-s2.0-85071730724-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOMPOSITE CATHODE-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusDOUBLE-PEROVSKITE-
dc.subject.keywordPlusDOPED CERIA-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordAuthorsolid oxide fuel cells-
dc.subject.keywordAuthornanocomposite-
dc.subject.keywordAuthorLSCF-GDC-
dc.subject.keywordAuthorin situ sol-gel process-
dc.subject.keywordAuthor3D reconstruction-
dc.subject.keywordAuthoroxygen reduction reactions-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE