Full metadata record

DC Field Value Language
dc.contributor.authorPark, Seong-Jin-
dc.contributor.authorHwang, Jang-Yeon-
dc.contributor.authorYoon, Chong S.-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorSun, Yang-Kook-
dc.date.accessioned2024-01-19T22:34:06Z-
dc.date.available2024-01-19T22:34:06Z-
dc.date.created2021-09-03-
dc.date.issued2018-05-30-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121355-
dc.description.abstractLithium (Li) metals have been considered most promising candidates as an anode to increase the energy density of Li-ion batteries because of their ultrahigh specific capacity (3860 mA h g(-1)) and lowest redox potential (-3.040 V vs standard hydrogen electrode). However, unstable dendritic electrodeposition, low Coulombic efficiency, and infinite volume changes severely hinder their practical uses. Herein, we report that ethyl methyl carbonate (EMC)- and fluoroethylene carbonate (FEC)-based electrolytes significantly enhance the energy density and cycling stability of Li-metal batteries (LMBs). In LMBs, using commercialized Ni-rich Li[Ni0.6Co0.2Mn0.2]O-2 (NCM622) and 1 M LiPF6 in EMC/FEC = 3:1 electrolyte exhibits a high initial capacity of 1.8 mA h cm(-2) with superior cycling stability and high Coulombic efficiency above 99.8% for 500 cycles while delivering a unprecedented energy density. The present work also highlights a significant improvement in scaled-up pouch-type Li/NCM622 cells. Moreover, the postmortem characterization of the cycled cathodes, separators, and Li-metal anodes collected from the pouch-type Li/NCM622 cells helped identifying the improvement or degradation mechanisms behind the observed electrochemical cycling.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectFLUOROETHYLENE CARBONATE-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectION BATTERIES-
dc.subjectLI-
dc.subjectANODE-
dc.subjectPOLYSULFIDE-
dc.subjectDEPOSITION-
dc.subjectCATHODES-
dc.subjectSOLVENT-
dc.titleStabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.8b04592-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.21, pp.17985 - 17993-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.citation.number21-
dc.citation.startPage17985-
dc.citation.endPage17993-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000434101200049-
dc.identifier.scopusid2-s2.0-85046532270-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFLUOROETHYLENE CARBONATE-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusPOLYSULFIDE-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusSOLVENT-
dc.subject.keywordAuthorLi-metal battery-
dc.subject.keywordAuthorhigh-energy density-
dc.subject.keywordAuthorNCM 622-
dc.subject.keywordAuthorfluoroethylene carbonate-
dc.subject.keywordAuthorLiF-rich SEI layer-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE