Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Seong-Jin | - |
dc.contributor.author | Hwang, Jang-Yeon | - |
dc.contributor.author | Yoon, Chong S. | - |
dc.contributor.author | Jung, Hun-Gi | - |
dc.contributor.author | Sun, Yang-Kook | - |
dc.date.accessioned | 2024-01-19T22:34:06Z | - |
dc.date.available | 2024-01-19T22:34:06Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2018-05-30 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/121355 | - |
dc.description.abstract | Lithium (Li) metals have been considered most promising candidates as an anode to increase the energy density of Li-ion batteries because of their ultrahigh specific capacity (3860 mA h g(-1)) and lowest redox potential (-3.040 V vs standard hydrogen electrode). However, unstable dendritic electrodeposition, low Coulombic efficiency, and infinite volume changes severely hinder their practical uses. Herein, we report that ethyl methyl carbonate (EMC)- and fluoroethylene carbonate (FEC)-based electrolytes significantly enhance the energy density and cycling stability of Li-metal batteries (LMBs). In LMBs, using commercialized Ni-rich Li[Ni0.6Co0.2Mn0.2]O-2 (NCM622) and 1 M LiPF6 in EMC/FEC = 3:1 electrolyte exhibits a high initial capacity of 1.8 mA h cm(-2) with superior cycling stability and high Coulombic efficiency above 99.8% for 500 cycles while delivering a unprecedented energy density. The present work also highlights a significant improvement in scaled-up pouch-type Li/NCM622 cells. Moreover, the postmortem characterization of the cycled cathodes, separators, and Li-metal anodes collected from the pouch-type Li/NCM622 cells helped identifying the improvement or degradation mechanisms behind the observed electrochemical cycling. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | FLUOROETHYLENE CARBONATE | - |
dc.subject | ELECTROCHEMICAL PROPERTIES | - |
dc.subject | ION BATTERIES | - |
dc.subject | LI | - |
dc.subject | ANODE | - |
dc.subject | POLYSULFIDE | - |
dc.subject | DEPOSITION | - |
dc.subject | CATHODES | - |
dc.subject | SOLVENT | - |
dc.title | Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.8b04592 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.10, no.21, pp.17985 - 17993 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 10 | - |
dc.citation.number | 21 | - |
dc.citation.startPage | 17985 | - |
dc.citation.endPage | 17993 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000434101200049 | - |
dc.identifier.scopusid | 2-s2.0-85046532270 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | FLUOROETHYLENE CARBONATE | - |
dc.subject.keywordPlus | ELECTROCHEMICAL PROPERTIES | - |
dc.subject.keywordPlus | ION BATTERIES | - |
dc.subject.keywordPlus | LI | - |
dc.subject.keywordPlus | ANODE | - |
dc.subject.keywordPlus | POLYSULFIDE | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | CATHODES | - |
dc.subject.keywordPlus | SOLVENT | - |
dc.subject.keywordAuthor | Li-metal battery | - |
dc.subject.keywordAuthor | high-energy density | - |
dc.subject.keywordAuthor | NCM 622 | - |
dc.subject.keywordAuthor | fluoroethylene carbonate | - |
dc.subject.keywordAuthor | LiF-rich SEI layer | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.