Full metadata record

DC Field Value Language
dc.contributor.authorWoo, Yesol-
dc.contributor.authorKim, Byeong-Soo-
dc.contributor.authorLee, Jong-Won-
dc.contributor.authorPark, Jeasung-
dc.contributor.authorCha, Minjun-
dc.contributor.authorTakeya, Satoshi-
dc.contributor.authorIm, Junhyuck-
dc.contributor.authorLee, Yongjae-
dc.contributor.authorJeon, Tae-In-
dc.contributor.authorBae, Hyeonhu-
dc.contributor.authorLee, Hoonkyung-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorYeo, Byung Chul-
dc.contributor.authorKim, Dongseon-
dc.contributor.authorYoon, Ji-Ho-
dc.date.accessioned2024-01-19T22:34:32Z-
dc.date.available2024-01-19T22:34:32Z-
dc.date.created2021-09-03-
dc.date.issued2018-05-08-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121378-
dc.description.abstractAn effective combination of host and guest molecules in a framework type of architecture can enhance the structural stability and physical properties of clathrate compounds. We report here that an organic clathrate compound consisting of a fullerene (C-60) guest and a hydroquinone (HQ) host framework shows enhanced hydrogen-storage capacity and good structural stability under pressures and temperatures up to 10 GPa and 438 K, respectively. This combined structure is formed in the extended beta-type HQ clathrate and admits 16 hydrogen molecules per cage, leading to a volumetric hydrogen uptake of 49.5 g L-1 at 77 K and 8 MPa, a value enhanced by 130% compared to that associated with the beta-type HQ clathrate. A close examination according to density functional theory calculations and grand canonical Monte Carlo simulations confirms the synergistic combination effect of the guest host molecules tailored for enhanced hydrogen storage. Moreover, the model simulations demonstrate that the lithium-doped HQ clathrates with C-60 guests reveal exceptionally high hydrogen-storage capacities. These results provide a new playground for additional fundamental studies of the structure property relationships and migration characteristics of small molecules in nanostructured materials.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCRYSTAL-STRUCTURE-
dc.subjectHYDROQUINONE CLATHRATE-
dc.subjectTHERMAL-DECOMPOSITION-
dc.subjectMOLECULAR-COMPLEXES-
dc.subjectSOLID-STATE-
dc.subjectX-RAY-
dc.subjectADSORPTION-
dc.subjectPRESSURE-
dc.subjectTRANSFORMATION-
dc.subjectTEMPERATURE-
dc.titleEnhanced Hydrogen-Storage Capacity and Structural Stability of an Organic Clathrate Structure with Fullerene (C-60) Guests and Lithium Doping-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.8b00749-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.30, no.9, pp.3028 - 3039-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume30-
dc.citation.number9-
dc.citation.startPage3028-
dc.citation.endPage3039-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000431926700019-
dc.identifier.scopusid2-s2.0-85046493649-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusHYDROQUINONE CLATHRATE-
dc.subject.keywordPlusTHERMAL-DECOMPOSITION-
dc.subject.keywordPlusMOLECULAR-COMPLEXES-
dc.subject.keywordPlusSOLID-STATE-
dc.subject.keywordPlusX-RAY-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordAuthorHydrogen Storage-
dc.subject.keywordAuthorOrganic Clathrate-
dc.subject.keywordAuthorFullerene-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE