Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Hyeon Ji-
dc.contributor.authorHong, Seungki-
dc.contributor.authorLee, Min Eui-
dc.contributor.authorHwang, Junyeon-
dc.contributor.authorJin, Hyoung-Joon-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2024-01-19T22:34:46Z-
dc.date.available2024-01-19T22:34:46Z-
dc.date.created2022-01-25-
dc.date.issued2018-05-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121391-
dc.description.abstractSodium metal is a good candidate as an anode for a large-scale energy storage device because of the abundance of sodium resources and its high theoretical capacity (similar to 1166 mA h g(-1)) in a low redox potential (-2.71 V versus the standard hydrogen electrode). In this study, we report effects of sulfur doping on highly efficient macroporous catalytic carbon nanotemplates (MC-CNTs) for a metal anode. MC-CNTs resulted in reversible and stable sodium metal deposition/stripping cycling over similar to 200 cycles, with average Coulombic efficiency (CE) of similar to 99.7%. After heat treatment with elemental sulfur, the sulfur-doped MC-CNTs (S-MC-CNTs) showed significantly improved cycling performances over 2400 cycles, with average CEs of similar to 99.8%. In addition, very small nucleation overpotentials from similar to 6 to similar to 14 mV were achieved at current densities from 0.5 to 8 mA cm(-2), indicating highly efficient catalytic effects for sodium metal nucleation and high rate performances of S-MC-CNTs. These results provide insight regarding a simple but feasible strategy based on bioabundant precursors and an easy process to design a high-performance metal anode.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleSulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.8b00258-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.1, no.5, pp.1846 - 1852-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume1-
dc.citation.number5-
dc.citation.startPage1846-
dc.citation.endPage1852-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000458705500007-
dc.identifier.scopusid2-s2.0-85063443373-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusDOTS-
dc.subject.keywordAuthorcarbon nanotemplate-
dc.subject.keywordAuthormacroporous carbon-
dc.subject.keywordAuthorsulfur doping-
dc.subject.keywordAuthormetal anode-
dc.subject.keywordAuthorsodium ion battery-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE