Full metadata record

DC Field Value Language
dc.contributor.authorMedwal, Rohit-
dc.contributor.authorGautam, Sanjeev-
dc.contributor.authorGupta, Surbhi-
dc.contributor.authorChae, Keun Hwa-
dc.contributor.authorAsokan, Kandasami-
dc.contributor.authorDeen, Gulam Roshan-
dc.contributor.authorRawat, Rajdeep Singh-
dc.contributor.authorKatiyar, Ram Singh-
dc.contributor.authorAnnapoorni, Subramanian-
dc.date.accessioned2024-01-19T23:00:18Z-
dc.date.available2024-01-19T23:00:18Z-
dc.date.created2021-09-03-
dc.date.issued2018-05-
dc.identifier.issn1949-307X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121401-
dc.description.abstractHeated dot magnetic recording (HDMR) technology promises to achieve ultrahigh storage density well above 4 Tb/in(2) by making use of L1(0) FePt bimetallic islands HDMR media require the development of thermally stable, noninteracting magnetic patterns to circumvent the signal noise and writability challenges We prepared self-stabilized carbon-L1(0) FePt nanoparticles (NPs) with average diameter of about 7.2 nm for the HDMR media FePt NPs synthesized by chemical reduction using oleic acid and oleylamine transform to the carbon-L1(0) FePt phase with optimized heat treatment at 873 K. The high-temperature annealing not only helps to achieve the desired L1(0) phase but also helps in the formation of a carbon coating on the FePt NPs due to degradation of the organic cap We investigated the effect of carbon coating on the electronic states of Fe using X-ray absorption measurements and corroborated with high-resolution transmission electron microscopy and Fourier-transform infrared spectroscopy X-ray magnetic circular dichroism reveals the presence of magnetocrystalline anisotropy in the carbon-L1(0) FePt NPs, which is also supported by the structural and magnetic measurements A magnetization-field loop at 300 K shows high coercivity of approximate to 1.6 T. The synthesized carbon-L1(0) FePt NPs can be used as FePt islands and should be suitable for high-density HDMR media.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectBIT-PATTERNED MEDIA-
dc.titleSelf-Stabilized Carbon-L1(0) FePt Nanoparticles for Heated Dot Recording Media-
dc.typeArticle-
dc.identifier.doi10.1109/LMAG.2018.2840990-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE MAGNETICS LETTERS, v.9-
dc.citation.titleIEEE MAGNETICS LETTERS-
dc.citation.volume9-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000437301900001-
dc.identifier.scopusid2-s2.0-85047608451-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusBIT-PATTERNED MEDIA-
dc.subject.keywordAuthorHard magnetic materials-
dc.subject.keywordAuthorheated dot magnetic recording-
dc.subject.keywordAuthorFePt-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE