Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cho, Kyungjin | - |
dc.contributor.author | Jeong, Yeongmi | - |
dc.contributor.author | Seo, Kyu Won | - |
dc.contributor.author | Lee, Seockheon | - |
dc.contributor.author | Smith, Adam L. | - |
dc.contributor.author | Shin, Seung Gu | - |
dc.contributor.author | Cho, Si-Kyung | - |
dc.contributor.author | Park, Chanhyuk | - |
dc.date.accessioned | 2024-01-19T23:01:04Z | - |
dc.date.available | 2024-01-19T23:01:04Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2018-05 | - |
dc.identifier.issn | 0960-8524 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/121444 | - |
dc.description.abstract | An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (>= 6.9 LMH) and organic removal efficiency (>= 98.0%) were maintained above 25 degrees C. The trend of methane production in the AnCMBR was similar except for at 15 degrees C. At 15 degrees C, the archaeal community structure did not shifted, whereas the bacterial community structure was changed. Various major archaeal species were identified as the mesophilic methanogens which unable to grow at 15 degrees C. Our results suggest that the AnCMBR can be applied to co-manage DWW and FRW above 20 degrees C. Future improvements including psychrophilic methanogen inoculation and process optimization would make co-manage DWW and FRW at lower temperature climates. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.biortech.2018.02.015 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Bioresource Technology, v.256, pp.137 - 144 | - |
dc.citation.title | Bioresource Technology | - |
dc.citation.volume | 256 | - |
dc.citation.startPage | 137 | - |
dc.citation.endPage | 144 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000428043000018 | - |
dc.identifier.scopusid | 2-s2.0-85041527694 | - |
dc.relation.journalWebOfScienceCategory | Agricultural Engineering | - |
dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalResearchArea | Agriculture | - |
dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | PSYCHROPHILIC CONDITIONS | - |
dc.subject.keywordPlus | METHANOGENIC ARCHAEON | - |
dc.subject.keywordPlus | FOULING CONTROL | - |
dc.subject.keywordPlus | SP NOV. | - |
dc.subject.keywordPlus | COMMUNITY | - |
dc.subject.keywordPlus | DIGESTION | - |
dc.subject.keywordPlus | BACTERIAL | - |
dc.subject.keywordPlus | BIOMETHANATION | - |
dc.subject.keywordPlus | PERSPECTIVES | - |
dc.subject.keywordPlus | STRATEGIES | - |
dc.subject.keywordAuthor | Anaerobic ceramic membrane bioreactor | - |
dc.subject.keywordAuthor | Domestic wastewater | - |
dc.subject.keywordAuthor | Food waste recycling wastewater | - |
dc.subject.keywordAuthor | Psychrophilic | - |
dc.subject.keywordAuthor | Microbial community structure | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.