Fibrous all-in-one monolith electrodes with a biological gluing layer and a membrane shell for weavable lithium-ion batteries

Authors
Ha, Sung HoonKim, Soo JinKim, HyoungjunLee, Chae WonShin, Kyu HangPark, Hae WonKim, SoonwooLim, YeinYi, HyunjungLim, Jung AhLee, Yun Jung
Issue Date
2018-04-21
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.6, no.15, pp.6633 - 6641
Abstract
The increasing demand for wearable devices ultimately requires the development of energy storage devices with wide structural versatility, lightweight and high energy density. Although various flexible batteries have been developed based on two-dimensional and one-dimensional platforms, truly weavable batteries with high capacity and elongation capability have not been materialized yet. Herein, we report weavable lithium ion batteries (LIBs) with high capacity by developing fibrous all-in-one electrode threads based on nanosized hybrid active layers with a biological gluing inner layer and a membrane shell. The thread consists of four distinct concentric structures, a carbon fiber core as a current collector, a conductive biological gluing layer, nanohybrid active materials, and a porous membrane layer. Nanosized LiFePO4/C-rGO and Li4Ti5O12/rGO are used for cathode and anode threads, respectively. This unique all-in-one structure combined with an inline coating approach ensures flexibility and mechanical stability with a high linear capacity of 1.6 mA h cm(-1). These features all together allow for various assembly schemes such as twisting and hierarchical weaving, enabling fabric LIBs to show 50% elongation via encoded structural deformation.
Keywords
WEARABLE ENERGY-STORAGE; CONDUCTIVE NANOMESH; FIBER; PERFORMANCE; YARNS; PAPER; OXIDE; SUPERCAPACITORS; PROGRESS; CATHODE; WEARABLE ENERGY-STORAGE; CONDUCTIVE NANOMESH; FIBER; PERFORMANCE; YARNS; PAPER; OXIDE; SUPERCAPACITORS; PROGRESS; CATHODE; textile battery; biological glue; in-line coating; lithium ion battery; high capacity
ISSN
2050-7488
URI
https://pubs.kist.re.kr/handle/201004/121463
DOI
10.1039/c8ta01405a
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE