Full metadata record

DC Field Value Language
dc.contributor.authorThi Anh Ho-
dc.contributor.authorBae, Changdeuck-
dc.contributor.authorNam, Hochul-
dc.contributor.authorKim, Eunsoo-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorShin, Hyunjung-
dc.date.accessioned2024-01-19T23:01:33Z-
dc.date.available2024-01-19T23:01:33Z-
dc.date.created2021-09-03-
dc.date.issued2018-04-18-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121467-
dc.description.abstractWe describe the direct preparation of crystalline Ni3S2 thin films via atomic layer deposition (ALD) techniques at temperatures as low as 250 degrees C without postthermal treatments. A new ALD chemistry is proposed using bis(1-dimethylamino-2-methyl-2-butoxy) nickel(II) [Ni(dmamb)(2)] and H2S as precursors. Homogeneous and conformal depositions of Ni3S2 films were achieved on 4 in. wafers (both metal and oxide substrates, induding Au and SiO2). The resulting crystalline Ni3S2 layers exhibited highly efficient and stable performance as electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solutions, with a low overpotential of 300 mV and a high turnover frequency for HER and an overpotential of 400 mV for OER (at a current density of 10 mA/cm(2)). Using our Ni3S2 films as both the cathode and the anode, two-electrode full-cell electrolyzers were constructed, which showed stable operation for 100 h at a current density of 10 mA/cm(2). The proposed ALD electrocatalysts on planar surfaces exhibited the best performance among Ni3S2 materials for overall water splitting recorded to date.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectNICKEL-SULFIDE FILMS-
dc.subjectHYDROGEN EVOLUTION CATALYSTS-
dc.subjectBIFUNCTIONAL ELECTROCATALYSTS-
dc.subjectASSISTED SYNTHESIS-
dc.subjectNI FOAM-
dc.subjectPERFORMANCE-
dc.subjectTHIN-
dc.subjectHEAZLEWOODITE-
dc.subjectCHALLENGES-
dc.subjectNANOTUBES-
dc.titleMetallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.8b00813-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.15, pp.12807 - 12815-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.citation.number15-
dc.citation.startPage12807-
dc.citation.endPage12815-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000430642100073-
dc.identifier.scopusid2-s2.0-85045654980-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusNICKEL-SULFIDE FILMS-
dc.subject.keywordPlusHYDROGEN EVOLUTION CATALYSTS-
dc.subject.keywordPlusBIFUNCTIONAL ELECTROCATALYSTS-
dc.subject.keywordPlusASSISTED SYNTHESIS-
dc.subject.keywordPlusNI FOAM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTHIN-
dc.subject.keywordPlusHEAZLEWOODITE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthornickel sulfide-
dc.subject.keywordAuthorelectrocatalyst-
dc.subject.keywordAuthoroverall water splitting-
dc.subject.keywordAuthorsurface modification-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthoroxygen evolution reaction-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE