Full metadata record

DC Field Value Language
dc.contributor.authorLim, Chaehyun-
dc.contributor.authorLee, Sang-Hun-
dc.contributor.authorJung, Youngmo-
dc.contributor.authorSon, Joo-Hiuk-
dc.contributor.authorChoe, Jong-Ho-
dc.contributor.authorKim, Young June-
dc.contributor.authorChoi, Jaebin-
dc.contributor.authorBae, Sukang-
dc.contributor.authorKim, Jae Hun-
dc.contributor.authorBlick, Robert H.-
dc.contributor.authorSeo, Minah-
dc.contributor.authorKim, Chulki-
dc.date.accessioned2024-01-19T23:02:58Z-
dc.date.available2024-01-19T23:02:58Z-
dc.date.created2021-09-03-
dc.date.issued2018-04-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121543-
dc.description.abstractThe charge transfer dynamics regarding an intimate contact between graphene and single-stranded deoxyribonucleic acid (ssDNA) is investigated from DC to the THz-regime. A graphene field-effect transistor (G-FET) is immersed in ssDNA solutions where the adsorption of ssDNA is controlled in terms of absolute coverage. DC-response of the G-FET is recorded and cross-validated by observing changes in Raman spectroscopy and further investigating THz-time domain spectroscopy using a nano-slot antenna. We find very good agreement between electrical and optical approaches where the Fermi level of the ssDNA-adsorbed graphene depends on the coverage nonlinearly. The results point towards a new doping method with sub-nanoscale patterning precision on graphene and its electronic applications based on electronic junction properties. (c) 2018 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectSINGLE-LAYER GRAPHENE-
dc.subjectDNA SENSOR CHIP-
dc.subjectTERAHERTZ-
dc.subjectCONDUCTIVITY-
dc.subjectSPECTROSCOPY-
dc.subjectTRANSISTOR-
dc.subjectDERIVATIVES-
dc.subjectSCATTERING-
dc.titleBroadband characterization of charge carrier transfer of hybrid graphene-deoxyribonucleic acid junctions-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2018.01.049-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.130, pp.525 - 531-
dc.citation.titleCARBON-
dc.citation.volume130-
dc.citation.startPage525-
dc.citation.endPage531-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000424889200064-
dc.identifier.scopusid2-s2.0-85041457958-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSINGLE-LAYER GRAPHENE-
dc.subject.keywordPlusDNA SENSOR CHIP-
dc.subject.keywordPlusTERAHERTZ-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusTRANSISTOR-
dc.subject.keywordPlusDERIVATIVES-
dc.subject.keywordPlusSCATTERING-
dc.subject.keywordAuthorTerahertz-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorDNA-
dc.subject.keywordAuthorFermi level-
dc.subject.keywordAuthorG-FET-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE