Full metadata record

DC Field Value Language
dc.contributor.authorLee, Min Eui-
dc.contributor.authorLee, Sungho-
dc.contributor.authorJin, Hyoung-Joon-
dc.contributor.authorYun, Young Soo-
dc.date.accessioned2024-01-19T23:03:06Z-
dc.date.available2024-01-19T23:03:06Z-
dc.date.created2021-09-03-
dc.date.issued2018-04-
dc.identifier.issn1226-086X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121551-
dc.description.abstractVanadium redox flow batteries (VRFBs) have attracted much attention as next-generation large-scale energy storage devices. However, they suffer from a drop in the energy efficiency induced by the large activation polarization during vanadium redox reactions. In this study, we designed electrode materials with a high energy efficiency that are a macroporous monolith composed of three-dimensionally entangled graphitic nanoribbons. These materials were denoted as macroporous graphitic nanowebs (M-GNWs), possessing a high specific surface area of 213 m(2) g(-1) and a large pore volume of 0.82 cm(3) g(-1). A large number of oxygen functional groups (C/O ratio of 4.4) were introduced after immersing the M-GNWs in the acidic electrolyte used in VRFBs. These properties of M-GNWs led to beneficial electrochemical catalytic effects such as low anodic and cathodic peak potential separation (Delta E-p) values of similar to 73.4 mV (catholyte) in a cyclic voltammetry test conducted at a sweep rate of 2 mV s(-1). Furthermore, the VRFBs based on an M-GNW anode and cathode pair exhibited a significantly improved energy efficiency of 85.8%, which is 12.4% higher than that (73.4%) of the commercial carbon felt-based VRFBs. (C) 2017 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisher한국공업화학회-
dc.titleStandalone macroporous graphitic nanowebs for vanadium redox flow batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.jiec.2017.09.043-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Industrial and Engineering Chemistry, v.60, pp.85 - 90-
dc.citation.titleJournal of Industrial and Engineering Chemistry-
dc.citation.volume60-
dc.citation.startPage85-
dc.citation.endPage90-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002338431-
dc.identifier.wosid000428103100005-
dc.identifier.scopusid2-s2.0-85030852150-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-FELT ELECTRODE-
dc.subject.keywordPlusOXYGEN FUNCTIONAL-GROUPS-
dc.subject.keywordPlusSODIUM-ION STORAGE-
dc.subject.keywordPlusSIZE L-A-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordAuthorMacroporous carbon-
dc.subject.keywordAuthorNanoweb-
dc.subject.keywordAuthorNanoribbon-
dc.subject.keywordAuthorElectrode-
dc.subject.keywordAuthorRedox flow batteries-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE