Full metadata record

DC Field Value Language
dc.contributor.authorJo, Jea Woong-
dc.contributor.authorSeo, Myung-Seok-
dc.contributor.authorJung, Jae Woong-
dc.contributor.authorPark, Joon-Suh-
dc.contributor.authorSohn, Byeong-Hyeok-
dc.contributor.authorKo, Min Jae-
dc.contributor.authorSon, Hae Jung-
dc.date.accessioned2024-01-19T23:30:54Z-
dc.date.available2024-01-19T23:30:54Z-
dc.date.created2021-09-03-
dc.date.issued2018-02-28-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121688-
dc.description.abstractThe control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectSTABLE PLANAR PEROVSKITE-
dc.subjectLOW-TEMPERATURE-
dc.subjectEXTRACTION LAYER-
dc.subjectBASE ADDUCT-
dc.subjectEFFICIENT-
dc.subjectCRYSTALLIZATION-
dc.subjectDEPOSITION-
dc.subjectSTABILITY-
dc.titleDevelopment of organic-inorganic double hole-transporting material for high performance perovskite solar cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2017.12.024-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.378, pp.98 - 104-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume378-
dc.citation.startPage98-
dc.citation.endPage104-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000427316300012-
dc.identifier.scopusid2-s2.0-85037989401-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSTABLE PLANAR PEROVSKITE-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusEXTRACTION LAYER-
dc.subject.keywordPlusBASE ADDUCT-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorPerovskite solar cell-
dc.subject.keywordAuthorHole-transporting layer-
dc.subject.keywordAuthorInterfacial engineering-
dc.subject.keywordAuthorPhotovoltaics-
dc.subject.keywordAuthorConjugated polyelectrolyte-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE