Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jeongmin-
dc.contributor.authorOh, Min-Wook-
dc.contributor.authorKim, Gwansik-
dc.contributor.authorBahk, Je-Hyeong-
dc.contributor.authorSong, Jae Yong-
dc.contributor.authorJeon, Seong Gi-
dc.contributor.authorChun, Dong Won-
dc.contributor.authorBae, Jee Hwan-
dc.contributor.authorShim, Wooyoung-
dc.contributor.authorLee, Wooyoung-
dc.date.accessioned2024-01-19T23:31:32Z-
dc.date.available2024-01-19T23:31:32Z-
dc.date.created2021-09-03-
dc.date.issued2018-02-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121720-
dc.description.abstractAllotropy is a fundamental concept that has been frequently studied since the mid-1800s. Although the bulk allotropy of elemental solids is fairly well understood, it remains challenging to reliably produce an allotrope at the nanoscale that has a different crystal structure and accompanies a change in physical properties for specific applications. Here, we demonstrate a "heterostructure" approach to produce allotrope-like bismuth nanowires, where it utilizes the lattice constant difference between bismuth and tellurium in core/shell structure. We find that the resultant strain of [100]-grown Bi nanowires increases the atomic linear density along the c-axis that has been predicted from theoretical considerations, enabling us to establish a design rule for strain-induced allotropic transformation. With our >400-nm-diameter nanowires, we measure a thermoelectric figure of merit ZT of 0.5 at room temperature with reduced thermal conductivity and enhanced Seebeck coefficient, which are primarily a result of the rough interface and the reduced band overlap according to our density-functional calculations. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleStrain-engineered allotrope-like bismuth nanowires for enhanced thermoelectric performance-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2017.10.062-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACTA MATERIALIA, v.144, pp.145 - 153-
dc.citation.titleACTA MATERIALIA-
dc.citation.volume144-
dc.citation.startPage145-
dc.citation.endPage153-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000424067100015-
dc.identifier.scopusid2-s2.0-85032795116-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTHERMAL-CONDUCTIVITY-
dc.subject.keywordPlusSEMICONDUCTOR TRANSITION-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusBI NANOWIRES-
dc.subject.keywordPlusFIGURE-
dc.subject.keywordPlusMERIT-
dc.subject.keywordPlusCRYSTALS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorThermoelectric-
dc.subject.keywordAuthorFigure of merit-
dc.subject.keywordAuthorStrained nanowire-
dc.subject.keywordAuthorBismuth nanowire-
dc.subject.keywordAuthorBand engineering-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE