Full metadata record

DC Field Value Language
dc.contributor.authorKo, Young-Jin-
dc.contributor.authorChoi, Keunsu-
dc.contributor.authorKim, Jun-Yong-
dc.contributor.authorKim, Inho-
dc.contributor.authorJeong, Doo Seok-
dc.contributor.authorChoi, Heon-Jin-
dc.contributor.authorMizuseki, Hiroshi-
dc.contributor.authorLee, Wook-Seong-
dc.date.accessioned2024-01-19T23:31:59Z-
dc.date.available2024-01-19T23:31:59Z-
dc.date.created2021-09-03-
dc.date.issued2018-02-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121745-
dc.description.abstractWe investigate the application of the onion-like carbon (OLC) as an electrocatalyst for [VO](2+)/[VO2](+) redox flow reaction; its performance (electrocatalytic activity and reversibility) strongly increases with the synthesis to peak at 1800 degrees C in 1000-2000 degrees C range. The dopant/modification-free, optimized redox performances of the OLC is comparable to some of the best data in the literature of various types of carbon materials with post-synthesis modifications or doping. Mechanism behind such performance optimization is investigated employing various physical/electrochemical analyses as well as the first-principles calculations. We demonstrate that the carbon dangling bonds or the crystalline defects, generated by an inherent mechanism unique to the OLC, played a pivotal role in determining the electrocatalytic performances. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleOnion-like carbon as dopant/modification-free electrocatalyst for [VO](2+)/[VO2](+) redox reaction: Performance-control mechanism-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2017.10.073-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.127, pp.31 - 40-
dc.citation.titleCARBON-
dc.citation.volume127-
dc.citation.startPage31-
dc.citation.endPage40-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000417484000004-
dc.identifier.scopusid2-s2.0-85032438734-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRAPHITE ELECTRODE MATERIALS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusFLOW BATTERY APPLICATION-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusFELT ELECTRODE-
dc.subject.keywordPlusVO2+/VO2+-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusNANODIAMOND-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorOnion-like carbon-
dc.subject.keywordAuthorVacancy generation-
dc.subject.keywordAuthorInherent tensile strain-
dc.subject.keywordAuthorVanadium redox reaction-
dc.subject.keywordAuthorFirst-principles calculation-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE