Full metadata record

DC Field Value Language
dc.contributor.authorKang, Sung-gyu-
dc.contributor.authorMoon, Daeyoung-
dc.contributor.authorJang, Jeonghwan-
dc.contributor.authorKim, Ju-Young-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorYoon, Euijoon-
dc.contributor.authorHan, Heung Nam-
dc.contributor.authorChoi, In-suk-
dc.date.accessioned2024-01-19T23:32:02Z-
dc.date.available2024-01-19T23:32:02Z-
dc.date.created2021-09-03-
dc.date.issued2018-02-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121748-
dc.description.abstractIn the present study, we found that alpha-alumina hollow nanoshell structure can exhibit an ultrahigh fracture strength even though it contains a significant number of nanopores. By systematically performing in situ mechanical testing and finite element simulations, we could measure that the fracture strength of an alpha-alumina hollow nanoshell structure is about four times higher than that of the conventional bulk size alpha-alumina. The high fracture strength of the alpha-alumina hollow nanoshell structure can be explained in terms of conventional fracture mechanics, in that the position and size of the nanopores are the most critical factors determining the fracture strength, even at the nanoscales. More importantly, by deriving a fundamental understanding, we would be able to provide guidelines for the design of reliable ceramic nanostructures for advanced GaN light-emitting diodes (LEDs). To that end, we demonstrated how our ultrastrong alpha-alumina hollow nanoshell structures could be successfully incorporated into GaN LEDs, thereby greatly improving the luminous efficiency and output power of the LEDs by 2.2 times higher than that of conventional GaN LEDs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectDEFORMATION-
dc.subjectSAPPHIRE-
dc.subjectCERAMICS-
dc.subjectMODULUS-
dc.subjectSTRAIN-
dc.subjectGROWTH-
dc.titleFlaw-Containing Alumina Hollow Nanostructures Have Ultrahigh Fracture Strength To Be Incorporated into High-Efficiency GaN Light-Emitting Diodes-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.7b05009-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.18, no.2, pp.1323 - 1330-
dc.citation.titleNANO LETTERS-
dc.citation.volume18-
dc.citation.number2-
dc.citation.startPage1323-
dc.citation.endPage1330-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000425559700097-
dc.identifier.scopusid2-s2.0-85042113883-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusSAPPHIRE-
dc.subject.keywordPlusCERAMICS-
dc.subject.keywordPlusMODULUS-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorCeramic nanostructures-
dc.subject.keywordAuthornanopores-
dc.subject.keywordAuthorfracture strength-
dc.subject.keywordAuthorsize effect-
dc.subject.keywordAuthorhollow nanostructures-
dc.subject.keywordAuthorlight-emitting diodes-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE