Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying
- Authors
- Hwang, Bohyun; Kwon, Hyunguk; Ko, Jeonghyun; Kim, Byung-Kook; Han, Jeong Woo
- Issue Date
- 2018-01-31
- Publisher
- ELSEVIER SCIENCE BV
- Citation
- APPLIED SURFACE SCIENCE, v.429, pp.87 - 94
- Abstract
- Sulfur compounds in fuels deactivate the surface of anode materials in solid oxide fuel cells (SOFCs), which adversely affect the long-term durability. To solve this issue, it is important to design new SOFC anode materials with high sulfur tolerance. Unfortunately, it is difficult to completely replace the traditional Ni anode owing to its outstanding reactivity with low cost. As an alternative, alloying Ni with transition metals is a practical strategy to enhance the sulfur resistance while taking advantage of Ni metal. Therefore, in this study, we examined the effects of transition metal (Cu, Rh, Pd, Ag, Pt, and Au) doping into a Ni catalyst on not only the adsorption of H2S, HS, S, and H but also H2S decomposition using density functional theory (DFT) calculations. The dopant metals were selected rationally by considering the stability of the Ni-based binary alloys. The interactions between sulfur atoms produced by H2S dissociation and the surface are weakened by the dopant metals at the topmost layer. In addition, the findings show that H2S dissociation can be suppressed by doping transition metals. It turns out that these effects are maximized in the Au-doped Ni catalyst. Our DFT results will provide useful insights into the design of sulfur-tolerant SOFC anode materials. (C) 2017 Elsevier B.V. All rights reserved.
- Keywords
- TOTAL-ENERGY CALCULATIONS; HYDROGEN-SULFIDE; H2S ADSORPTION; FUEL-CELL; ANODES; DISSOCIATION; TRANSITION; METAL; GAS; 1ST-PRINCIPLES; TOTAL-ENERGY CALCULATIONS; HYDROGEN-SULFIDE; H2S ADSORPTION; FUEL-CELL; ANODES; DISSOCIATION; TRANSITION; METAL; GAS; 1ST-PRINCIPLES; Solid oxide fuel cell; Anode; Sulfur poisoning; Alloy; Density functional theory
- ISSN
- 0169-4332
- URI
- https://pubs.kist.re.kr/handle/201004/121785
- DOI
- 10.1016/j.apsusc.2017.06.164
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.