Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation
- Authors
- Shin, Weon Ho; Roh, Jong Wook; Ryu, Byungki; Chang, Hye Jung; Kim, Hyun Sik; Lee, Soonil; Seo, Won Seon; Ahn, Kyunghan
- Issue Date
- 2018-01-31
- Publisher
- American Chemical Society
- Citation
- ACS Applied Materials & Interfaces, v.10, no.4, pp.3689 - 3698
- Abstract
- It has beeri a-difficulty to form well-distributed nano-and mesosized inclusions in a, Bi2Te3-based matrix and thereby realizing no degradation of carrier mobility at interfaces between matrix and inclusions for high thermoelectric performances. Herein, we Successfully synthesize multistructured thermoelectric Bi0.4Sb1.6Te3 materials with Fe-rich nano precipitates and sub-micron FeTe2 inclusions by a conventional solid-state reaction followed by melt-spinning, and spark plasma sintering that could be a facile preparation method for scale-up production. This study presents a bismuth antimony telluride based thermoelectric material with a multiscale structure whose lattice thermal conductivity is drastically reduced with minimal degradation on its carrier mobility. This is possible because a carefully chosen FeTe2 incorporated in the matrix allows its interfacial valence band with the matrix to be aligned, leading to a significantly improved p-type thermoelectric power factor. Consequently, an impressively high thermoelectric figure of merit ZT of 1.52 is achieved at 396 K for p-type Bi0.4Sb1.6Te3-8 mol % FeTe2, which is a 43% enhancement in ZT compared to the pristine Bi0.4Sb1.6Te3. This work demonstrates riot billy the effectiveness of multiscale structuring, for lowering lattice thermal conductivities, but also the importance of interfacial band alignment between matrix and inclusions for maintaining high carrier mobilities when designing high-performance thermoelectric materials.
- Keywords
- LATTICE THERMAL-CONDUCTIVITY; POWER-FACTOR; HIGH-FIGURE; AB-INITIO; MERIT; PBTE; EFFICIENCY; OXIDE; CONVERGENCE; DEFECTS; LATTICE THERMAL-CONDUCTIVITY; POWER-FACTOR; HIGH-FIGURE; AB-INITIO; MERIT; PBTE; EFFICIENCY; OXIDE; CONVERGENCE; DEFECTS; thermoelectric; BST; FeTe2; band alignment; nanoprecipitates; multiscale structuring
- ISSN
- 1944-8244
- URI
- https://pubs.kist.re.kr/handle/201004/121786
- DOI
- 10.1021/acsami.7b18451
- Appears in Collections:
- KIST Article > 2018
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.