Full metadata record

DC Field Value Language
dc.contributor.authorBhattacharjee, Satadeep-
dc.contributor.authorLee, Seung-Cheol-
dc.date.accessioned2024-01-19T23:33:10Z-
dc.date.available2024-01-19T23:33:10Z-
dc.date.created2021-08-31-
dc.date.issued2018-01-11-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121806-
dc.description.abstractThe role of spin orientation on the reactivity of oxygen reduction reaction (ORR) intermediates (O, OH) on a ferromagnetic electrode surface is studied using constrained density functional theory formalism. We show that the strength of the binding of these reaction intermediates depend on their relative spin orientations with respect to the magnetization of the electrode. This suggests that oxygen-based electrochemical reactions on ferromagnetic catalyst surfaces can be controlled through the applied magnetic field. In the present study, we demonstrate such a possibility through the study of an oxygen reduction reaction on a PdFe (001) surface by introducing a new concept: spin orientation dependent overpotential. Also, we have explained the origin of lower dissociation barrier for the O-2, molecule on ferromagnetic surfaces when its spin moment is antiparallel to the surface magnetization as reported in the recent experiments.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectPT-M M-
dc.subjectREDUCTION ACTIVITY-
dc.subject1ST PRINCIPLES-
dc.subjectCO-
dc.subjectELECTROCATALYSTS-
dc.subjectPERFORMANCE-
dc.subjectCATALYSTS-
dc.subjectDESIGN-
dc.subjectNI-
dc.subjectMAGNETISM-
dc.titleControlling Oxygen-Based Electrochemical Reactions through Spin Orientation-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.7b10147-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.122, no.1, pp.894 - 901-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume122-
dc.citation.number1-
dc.citation.startPage894-
dc.citation.endPage901-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000422814200096-
dc.identifier.scopusid2-s2.0-85040517633-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPT-M M-
dc.subject.keywordPlusREDUCTION ACTIVITY-
dc.subject.keywordPlus1ST PRINCIPLES-
dc.subject.keywordPlusCO-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusMAGNETISM-
dc.subject.keywordAuthorDensity Functional Theory-
dc.subject.keywordAuthorCatalyst-
dc.subject.keywordAuthorSpin orientation-
dc.subject.keywordAuthorMagnetic Material-
dc.subject.keywordAuthorOxygen Reduction Reaction-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE