Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Sang Jin | - |
dc.contributor.author | Ko, Tae-Jun | - |
dc.contributor.author | Yoon, Juil | - |
dc.contributor.author | Moon, Myoung-Woon | - |
dc.contributor.author | Oh, Kyu Hwan | - |
dc.contributor.author | Han, Jun Hyun | - |
dc.date.accessioned | 2024-01-19T23:33:29Z | - |
dc.date.available | 2024-01-19T23:33:29Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2018-01-01 | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/121824 | - |
dc.description.abstract | A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m(-1) without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes. (C) 2017 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | SELF-ASSEMBLED MONOLAYER | - |
dc.subject | BARRIER DISCHARGE PLASMA | - |
dc.subject | POLYIMIDE FILMS | - |
dc.subject | SURFACE MODIFICATION | - |
dc.subject | ION-BEAM | - |
dc.subject | POLY(ETHYLENE-TEREPHTHALATE) | - |
dc.subject | POLYMER | - |
dc.subject | SYSTEM | - |
dc.subject | DEPOSITION | - |
dc.subject | PET | - |
dc.title | Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.apsusc.2017.08.195 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | APPLIED SURFACE SCIENCE, v.427, pp.1 - 9 | - |
dc.citation.title | APPLIED SURFACE SCIENCE | - |
dc.citation.volume | 427 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 9 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000415219100001 | - |
dc.identifier.scopusid | 2-s2.0-85028729865 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SELF-ASSEMBLED MONOLAYER | - |
dc.subject.keywordPlus | BARRIER DISCHARGE PLASMA | - |
dc.subject.keywordPlus | POLYIMIDE FILMS | - |
dc.subject.keywordPlus | SURFACE MODIFICATION | - |
dc.subject.keywordPlus | ION-BEAM | - |
dc.subject.keywordPlus | POLY(ETHYLENE-TEREPHTHALATE) | - |
dc.subject.keywordPlus | POLYMER | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | PET | - |
dc.subject.keywordAuthor | Flexible substrates | - |
dc.subject.keywordAuthor | Plasma treatment | - |
dc.subject.keywordAuthor | Wettability | - |
dc.subject.keywordAuthor | Adhesion | - |
dc.subject.keywordAuthor | Fatigue | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.