InGaZnO transistor based on porous Ag nanowire-functionalized gate electrode for detection of bio-relevant molecules

Authors
Yoo, Tae-HeeMoon, Hi GyuWang, Byung-YongSang, Byoung-InAngadi, BasavarajOh, Young-JeiChoi, Won KookKang, Chong-YunHwang, Do Kyung
Issue Date
2018-01
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.254, pp.36 - 43
Abstract
We report on InGaZnO (IGZO) thin film transistors (TFTs)-based bio-chemical sensors which can detect the chemical/biological species. As novel sensing platform, the IGZO TFT with Ag nanowire (NW) mesh showed pronounced output voltage changes responding to all analytes of H2O2, b-D-glucose, D-glucono-1,5-Lactione, and lactic acid, which are reproducible and reversible. Herein, porous Ag NW-functionalized top gate electrode plays a major role in sensing platform for enhanced sensing capability in aqueous medium. Moreover, these top gate geometry serve as a stable backplane for electrical modulation. As a result, analytes solutions become acidic or basic and such pH alterations induce significant turn-on voltage shifts on our devices. For implementation of a resistive load inverter, the output sensing voltage signals can be directly extracted, and such signals are reproducible and reversible. The proposed IGZO TFTs with Ag NW mesh top gate electrode based sensing platform pave the way for development of portable and reusable real-time non-destructive label-free chemical/biological sensors. (C) 2017 Elsevier B.V. All rights reserved.
Keywords
THIN-FILM TRANSISTORS; FREE DNA DETECTION; ROOM-TEMPERATURE; TRANSPARENT; SENSOR; BIOSENSORS; H2O2; THIN-FILM TRANSISTORS; FREE DNA DETECTION; ROOM-TEMPERATURE; TRANSPARENT; SENSOR; BIOSENSORS; H2O2; InGaZnO semiconductor; Ag nanowire; Chemical/biological sensing platform
ISSN
0925-4005
URI
https://pubs.kist.re.kr/handle/201004/121886
DOI
10.1016/j.snb.2017.07.022
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE