Full metadata record

DC Field Value Language
dc.contributor.authorNam, Ki-Ho-
dc.contributor.authorIm, Yong-O.-
dc.contributor.authorPark, Hye Jin-
dc.contributor.authorLee, Haena-
dc.contributor.authorPark, Junbeom-
dc.contributor.authorJeong, Sunho-
dc.contributor.authorKim, Seung Min-
dc.contributor.authorYou, Nam-Ho-
dc.contributor.authorChoi, Jae-Hak-
dc.contributor.authorHan, Haksoo-
dc.contributor.authorLee, Kun-Hong-
dc.contributor.authorKu, Bon-Cheol-
dc.date.accessioned2024-01-20T00:01:00Z-
dc.date.available2024-01-20T00:01:00Z-
dc.date.created2021-09-03-
dc.date.issued2017-12-01-
dc.identifier.issn0266-3538-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121938-
dc.description.abstractDirect spinning of carbon nanotube (CNT) fibers is a facile method to produce CNT fibers because of its high productivity and the simplicity of the spinning process from CNT aerogels. Directly spun CNT fibers, however, generally include amorphous carbon and weak shear interaction between tubes or bundles, thereby causing insufficient load transfer. Here, we report newly designed polyimide/reduced graphene oxide (PI/RGO)/CNT fiber composites in combination with polymer infiltration followed by photonic flash sintering on a time scale of 0.5 ms to overcome the critical drawbacks in directly spun CNT fibers. The mechanical performances of the CNT fibers were closely related to the junction strength in CNT bundles. In addition, PI can be interlocked with CNT bundles and effectively serve as a binder to link the GO and CNT fibers with strong interfacial interactions. The PI infiltrated CNT fibers showed the highest load transfer, resulting in a significantly enhanced increase of 83% in specific strength (1.1 N/tex) and a 477% increase in tensile strength (800 MPa) compared to pristine CNT fibers. Furthermore, the photonic sintered PI/RGO/CNT fibers improved electrical conductivity by over 244% (5.5 x 10(3) S cm(-1)) over pristine CNT fibers without deteriorating mechanical properties. The results demonstrate that the mechanical strength, modulus and electrical conductivity can be enhanced simultaneously by molecular-level coupling of polymer/graphene with CNT fibers via photonic flash sintering. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectMACROSCOPIC FIBERS-
dc.subjectRAMAN-SPECTROSCOPY-
dc.subjectGRAPHENE OXIDE-
dc.subjectCONDUCTIVITY-
dc.subjectYARNS-
dc.subjectENHANCEMENT-
dc.subjectSTRENGTH-
dc.subjectTEXTILES-
dc.subjectRIBBONS-
dc.subjectBUNDLES-
dc.titlePhotoacoustic effect on the electrical and mechanical properties of polymer-infiltrated carbon nanotube fiber/graphene oxide composites-
dc.typeArticle-
dc.identifier.doi10.1016/j.compscitech.2017.10.014-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPOSITES SCIENCE AND TECHNOLOGY, v.153, pp.136 - 144-
dc.citation.titleCOMPOSITES SCIENCE AND TECHNOLOGY-
dc.citation.volume153-
dc.citation.startPage136-
dc.citation.endPage144-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000418986300015-
dc.identifier.scopusid2-s2.0-85032279025-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMACROSCOPIC FIBERS-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusYARNS-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusTEXTILES-
dc.subject.keywordPlusRIBBONS-
dc.subject.keywordPlusBUNDLES-
dc.subject.keywordAuthorCarbon nanotube fiber-
dc.subject.keywordAuthorPhotonic flash sintering-
dc.subject.keywordAuthorPolyimide-
dc.subject.keywordAuthorReduced graphene oxide-
dc.subject.keywordAuthorElectrical conductivity-
dc.subject.keywordAuthorMechanical strength-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE