Full metadata record

DC Field Value Language
dc.contributor.authorAli, Ghulam-
dc.contributor.authorLee, Ji-Hoon-
dc.contributor.authorOh, Si Hyoung-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorChung, Kyung Yoon-
dc.date.accessioned2024-01-20T00:01:40Z-
dc.date.available2024-01-20T00:01:40Z-
dc.date.created2021-09-03-
dc.date.issued2017-12-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121975-
dc.description.abstractSn-based materials have drawn great attention as anodes for rechargeable batteries because of their extremely high theoretical energy storage capacities. Herein, a nanocomposite based on SnF2 and acetylene black is proposed as a high-performance anode material for sodium-ion batteries and their electrochemical performances, as well as related energy storage mechanism, are investigated. The nanocomposite electrode delivered a high reversible capacity of 563 mAh g(-1) which is considerably improved compared to a reversible capacity of 323 mAh g(-1) of the micron-sized bare SnF2 electrode. The nanocomposite electrode shows superior rate capability and delivers a reversible capacity of 191 mAh g(-1) at a high current density of 1 C, while the bare electrode delivers negligible capacities. The changes in crystallographic structure are observed using in-situ XRD and the results reveal the existence of a solid solution of two or more species during dis/charging. The electronic and atomic configurations depending on the state of dis/charging are systematically investigated using ex-situ X-ray absorption spectroscopy. The results reveal that the valence change of Sn follows the conversion (SnF2 + 2Na -> Sn + 2NaF) and alloying (Sn + XNa -> SnNaX) reaction upon sodium insertion into a composite.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectELECTRICAL ENERGY-STORAGE-
dc.subjectSODIUM-ION-
dc.subjectCATHODE MATERIALS-
dc.subjectLI-ION-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectLITHIUM-
dc.subjectTIN-
dc.subjectELECTRODES-
dc.subjectNANOCRYSTALS-
dc.subjectPERFORMANCE-
dc.titleElucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2017.10.036-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO ENERGY, v.42, pp.106 - 114-
dc.citation.titleNANO ENERGY-
dc.citation.volume42-
dc.citation.startPage106-
dc.citation.endPage114-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000418344200012-
dc.identifier.scopusid2-s2.0-85032183976-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRICAL ENERGY-STORAGE-
dc.subject.keywordPlusSODIUM-ION-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusTIN-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorSodium-ion batteries-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorSnF2-
dc.subject.keywordAuthorComposite electrode-
dc.subject.keywordAuthorReaction mechanism-
dc.subject.keywordAuthorX-ray absorption-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE