Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jaemin-
dc.contributor.authorKim, Minkyu-
dc.contributor.authorKim, Keehoon-
dc.date.accessioned2024-01-20T00:02:21Z-
dc.date.available2024-01-20T00:02:21Z-
dc.date.created2021-09-03-
dc.date.issued2017-12-
dc.identifier.issn1534-4320-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122012-
dc.description.abstractThis paper proposes a novel control method to minimize muscle energy for power-assistant robotic systems that support the intended motions of a user under unknown external perturbations, using surface electromyogram (sEMG) signals. Conventional control methods based on force/torque (F/T) sensors have limitations to detect human intentions and could, presumably, misunderstand or distort such intentions because of external perturbations of the interaction forces, such as those found in activities of daily living. F/T sensors measure the sum of the applied force, including unknown external forces and human intention; thus, a power-assistant robot controller cannot exactly decompose the real human force. In this paper, we describe a counterexample that cannot be supported by conventional force-sensor-based control methods. We also verify why these control methods may guide human behavior in the wrong direction, and thus, have limitations under unknown external perturbations. We then propose a new control method to minimize the muscle energy indicated by sEMG signals. The proposed control approach is fundamentally based on the concept of power-assistance, in which a robot can reduce the users expended muscle energy while performing given tasks. The proposed control approach is verified through experiments using a power-assistant robotic system for the upper limbs under external perturbations.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectDRIVEN MUSCULOSKELETAL MODEL-
dc.subjectEXOSKELETON ROBOT-
dc.subjectEMG CONTROL-
dc.subjectREHABILITATION-
dc.subjectDESIGN-
dc.subjectTHERAPY-
dc.titleA Control Scheme to Minimize Muscle Energy for Power Assistant Robotic Systems Under Unknown External Perturbation-
dc.typeArticle-
dc.identifier.doi10.1109/TNSRE.2017.2723609-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, v.25, no.12, pp.2313 - 2327-
dc.citation.titleIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING-
dc.citation.volume25-
dc.citation.number12-
dc.citation.startPage2313-
dc.citation.endPage2327-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000418073000010-
dc.identifier.scopusid2-s2.0-85023175840-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryRehabilitation-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaRehabilitation-
dc.type.docTypeArticle-
dc.subject.keywordPlusDRIVEN MUSCULOSKELETAL MODEL-
dc.subject.keywordPlusEXOSKELETON ROBOT-
dc.subject.keywordPlusEMG CONTROL-
dc.subject.keywordPlusREHABILITATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordAuthorPower-assistant robot-
dc.subject.keywordAuthorsEMG-
dc.subject.keywordAuthorwearable robot-
dc.subject.keywordAuthorexternal perturbation-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE