Full metadata record

DC Field Value Language
dc.contributor.authorKrishnan, N. Nambi-
dc.contributor.authorJoseph, Dickson-
dc.contributor.authorNgoc My Hanh Duong-
dc.contributor.authorKonovalova, Anastasiia-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorHenkensmeier, Dirk-
dc.date.accessioned2024-01-20T00:02:35Z-
dc.date.available2024-01-20T00:02:35Z-
dc.date.created2021-09-03-
dc.date.issued2017-12-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122026-
dc.description.abstractIonically crosslinked acid/base blend membranes of PBI-OO and a sulfonated polysulfone can be covalently crosslinked through aromatic sulfone groups, which form in a thermally induced Friedel-Crafts reaction. Here we systematically compare a series of blend membranes before and after curing. Even though the cured membranes have a lower phosphoric acid uptake even at increased doping time and temperature, they have an improved conductivity and therefore fuel cell performance than the ionically crosslinked membranes. For example, a covalently crosslinked blend membrane containing 5% of the acid component (c-BM 1) reached a conductivity of 260 mS/cm at 160 degrees C and a relative humidity of 5%, even though the PA uptake was just 266 wt%. In the fuel cell (H-2, air, 160 degrees C), this membrane yielded a peak power density of 452 mW cm(-2), about 100 mW cm(-2) above that of the commercial meta-PBI membrane. In a long term stability test, the ionically crosslinked membrane ucBM 1 already failed within 100 h, while the cured c-BM 1 membrane was much more stable. A cured membrane with less PA and higher amount of the acid blend component (c-BM 3) gave a stable performance for over 1000 h, proving that thermally induced sulfone crosslinking strongly increases the stability.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titlePhosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2017.09.049-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.544, pp.416 - 424-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume544-
dc.citation.startPage416-
dc.citation.endPage424-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000412350900045-
dc.identifier.scopusid2-s2.0-85029722865-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusLINKING-
dc.subject.keywordAuthorPolybenzimidazole-
dc.subject.keywordAuthorCrosslinked membranes-
dc.subject.keywordAuthorFriedel-Crafts reaction-
dc.subject.keywordAuthorPhosphoric acid-
dc.subject.keywordAuthorHT PEMFC-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE