Full metadata record

DC Field Value Language
dc.contributor.authorKim, Myeong-Seong-
dc.contributor.authorBak, Seong-Min-
dc.contributor.authorLee, Suk-Woo-
dc.contributor.authorCho, Byung-Won-
dc.contributor.authorRoh, Kwang Chul-
dc.contributor.authorKim, Kwang-Bum-
dc.date.accessioned2024-01-20T00:03:48Z-
dc.date.available2024-01-20T00:03:48Z-
dc.date.created2022-01-25-
dc.date.issued2017-11-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122089-
dc.description.abstractHerein, we report on Li3V2(PO4)(3) (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability. Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm(-3)) and good electrochemical properties. Specifically, in the voltage range of 3.0-4.3 V, the composite exhibits a specific capacity of 131 mAh g(-1) at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0-4.8 V, it exhibits a high specific capacity of 185 mAh g(-1) at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C). (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleSelf-assembled Li3V2(PO4)(3)/reduced graphene oxide multilayer composite prepared by sequential adsorption-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2017.09.057-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.367, pp.167 - 176-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume367-
dc.citation.startPage167-
dc.citation.endPage176-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000415780000020-
dc.identifier.scopusid2-s2.0-85029782216-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusBATTERY CATHODE MATERIALS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusBINDER-FREE-
dc.subject.keywordPlusION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusSHEETS-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordAuthorMultilayer structure-
dc.subject.keywordAuthorGraphene-based 3D assembly-
dc.subject.keywordAuthorSequential adsorption method-
dc.subject.keywordAuthorHigh-rate lithium-ion batteries-
dc.subject.keywordAuthorEnergy efficiency-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE