Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Seonkyoo-
dc.contributor.authorWilliams, John R.-
dc.contributor.authorJuanes, Ruben-
dc.contributor.authorKang, Peter K.-
dc.date.accessioned2024-01-20T00:03:53Z-
dc.date.available2024-01-20T00:03:53Z-
dc.date.created2022-01-10-
dc.date.issued2017-11-
dc.identifier.issn0309-1708-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122094-
dc.description.abstractThe injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectGRADIENT TRACER TEST-
dc.subjectDENSITY GROUNDWATER-FLOW-
dc.subjectENSEMBLE KALMAN FILTER-
dc.subjectDATA ASSIMILATION-
dc.subjectSOLUTE TRANSPORT-
dc.subjectHYDRAULIC CONDUCTIVITY-
dc.subjectCAPE-COD-
dc.subjectGEOSTATISTICAL APPROACH-
dc.subjectCOVARIANCE INFLATION-
dc.subjectTHEORETICAL-ANALYSIS-
dc.titleMaximizing the value of pressure data in saline aquifer characterization-
dc.typeArticle-
dc.identifier.doi10.1016/j.advwatres.2017.08.019-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCES IN WATER RESOURCES, v.109, pp.14 - 28-
dc.citation.titleADVANCES IN WATER RESOURCES-
dc.citation.volume109-
dc.citation.startPage14-
dc.citation.endPage28-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000416037100002-
dc.identifier.scopusid2-s2.0-85033727898-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.relation.journalResearchAreaWater Resources-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRADIENT TRACER TEST-
dc.subject.keywordPlusDENSITY GROUNDWATER-FLOW-
dc.subject.keywordPlusENSEMBLE KALMAN FILTER-
dc.subject.keywordPlusDATA ASSIMILATION-
dc.subject.keywordPlusSOLUTE TRANSPORT-
dc.subject.keywordPlusHYDRAULIC CONDUCTIVITY-
dc.subject.keywordPlusCAPE-COD-
dc.subject.keywordPlusGEOSTATISTICAL APPROACH-
dc.subject.keywordPlusCOVARIANCE INFLATION-
dc.subject.keywordPlusTHEORETICAL-ANALYSIS-
dc.subject.keywordAuthorManaged aquifer recharge-
dc.subject.keywordAuthorDensity-dependent flow-
dc.subject.keywordAuthorInverse modeling-
dc.subject.keywordAuthorEnsemble Kalman filter-
dc.subject.keywordAuthorValue of information-
dc.subject.keywordAuthorPermeability estimation-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE