Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sung, Chang Hyun | - |
dc.contributor.author | Boppella, Ramireddy | - |
dc.contributor.author | Yoo, Jai-Wook | - |
dc.contributor.author | Lim, Dong-Hee | - |
dc.contributor.author | Moon, Byung-Moo | - |
dc.contributor.author | Kim, Dong Ha | - |
dc.contributor.author | Kim, Jin Young | - |
dc.date.accessioned | 2024-01-20T00:04:37Z | - |
dc.date.available | 2024-01-20T00:04:37Z | - |
dc.date.created | 2021-09-03 | - |
dc.date.issued | 2017-11 | - |
dc.identifier.issn | 2196-7350 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/122135 | - |
dc.description.abstract | Stable alternative catalyst supports to replace conventional carbon-based materials in polymer electrolyte membrane fuel cells (PEMFCs) are being explored to achieve dramatic improvements in the performance and durability of fuel cells. Herein, conductive Ti3+ self-doped and carbon-coated TiO2-reduced graphene oxide (rGO) hollow nanosphere-supported Pt nanoparticles (Pt/rGO/TiO2) are investigated as cathode electrocatalysts for PEMFCs. Importantly, the rGO/TiO2 hollow nanospheres display excellent electrochemical stability under high potential cycling (1.2-1.7 V) compared with conventional carbon black (CB) support materials that normally induce electrochemical corrosion during fuel cell operation. The Pt/rGO/TiO2 is tested to establish its catalytic activity and stability using accelerated durability testing that mimics the conditions and degradation modes encountered during long-term fuel cell operation. The Pt/rGO/TiO2 cathode catalyst demonstrates comparable catalytic activity toward oxygen reduction and exhibits much higher stability than the Pt/CB one at high potentials in terms of minimal loss of the Pt electrochemical surface area. More importantly, Pt/rGO/TiO2 displays a negligible voltage drop over long-term cycling during practical fuel cell operation. The high stability of the Pt/rGO/TiO2 electrocatalyst synthesized in this investigation offers a new approach to improve the reliability and durability of PEMFC cathode catalysts. | - |
dc.language | English | - |
dc.publisher | WILEY | - |
dc.title | Enhanced Stability and Electrochemical Performance of Carbon-Coated Ti3+ Self-Doped TiO2-Reduced Graphene Oxide Hollow Nanostructure-Supported Pt-Catalyzed Fuel Cell Electrodes | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/admi.201700564 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ADVANCED MATERIALS INTERFACES, v.4, no.21 | - |
dc.citation.title | ADVANCED MATERIALS INTERFACES | - |
dc.citation.volume | 4 | - |
dc.citation.number | 21 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000415903000006 | - |
dc.identifier.scopusid | 2-s2.0-85028341622 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | INITIO MOLECULAR-DYNAMICS | - |
dc.subject.keywordPlus | TOTAL-ENERGY CALCULATIONS | - |
dc.subject.keywordPlus | TIO2 NANOCRYSTALS | - |
dc.subject.keywordPlus | 001 FACETS | - |
dc.subject.keywordPlus | ELECTROCATALYST | - |
dc.subject.keywordPlus | DURABILITY | - |
dc.subject.keywordPlus | NANOCOMPOSITES | - |
dc.subject.keywordPlus | TRANSITION | - |
dc.subject.keywordPlus | EFFICIENCY | - |
dc.subject.keywordPlus | NANOSHEETS | - |
dc.subject.keywordAuthor | catalyst support | - |
dc.subject.keywordAuthor | enhanced stability | - |
dc.subject.keywordAuthor | hollow structures | - |
dc.subject.keywordAuthor | PEMFCs | - |
dc.subject.keywordAuthor | rGO/TiO2 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.