Full metadata record

DC Field Value Language
dc.contributor.authorSung, Chang Hyun-
dc.contributor.authorBoppella, Ramireddy-
dc.contributor.authorYoo, Jai-Wook-
dc.contributor.authorLim, Dong-Hee-
dc.contributor.authorMoon, Byung-Moo-
dc.contributor.authorKim, Dong Ha-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-20T00:04:37Z-
dc.date.available2024-01-20T00:04:37Z-
dc.date.created2021-09-03-
dc.date.issued2017-11-
dc.identifier.issn2196-7350-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122135-
dc.description.abstractStable alternative catalyst supports to replace conventional carbon-based materials in polymer electrolyte membrane fuel cells (PEMFCs) are being explored to achieve dramatic improvements in the performance and durability of fuel cells. Herein, conductive Ti3+ self-doped and carbon-coated TiO2-reduced graphene oxide (rGO) hollow nanosphere-supported Pt nanoparticles (Pt/rGO/TiO2) are investigated as cathode electrocatalysts for PEMFCs. Importantly, the rGO/TiO2 hollow nanospheres display excellent electrochemical stability under high potential cycling (1.2-1.7 V) compared with conventional carbon black (CB) support materials that normally induce electrochemical corrosion during fuel cell operation. The Pt/rGO/TiO2 is tested to establish its catalytic activity and stability using accelerated durability testing that mimics the conditions and degradation modes encountered during long-term fuel cell operation. The Pt/rGO/TiO2 cathode catalyst demonstrates comparable catalytic activity toward oxygen reduction and exhibits much higher stability than the Pt/CB one at high potentials in terms of minimal loss of the Pt electrochemical surface area. More importantly, Pt/rGO/TiO2 displays a negligible voltage drop over long-term cycling during practical fuel cell operation. The high stability of the Pt/rGO/TiO2 electrocatalyst synthesized in this investigation offers a new approach to improve the reliability and durability of PEMFC cathode catalysts.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleEnhanced Stability and Electrochemical Performance of Carbon-Coated Ti3+ Self-Doped TiO2-Reduced Graphene Oxide Hollow Nanostructure-Supported Pt-Catalyzed Fuel Cell Electrodes-
dc.typeArticle-
dc.identifier.doi10.1002/admi.201700564-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS INTERFACES, v.4, no.21-
dc.citation.titleADVANCED MATERIALS INTERFACES-
dc.citation.volume4-
dc.citation.number21-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000415903000006-
dc.identifier.scopusid2-s2.0-85028341622-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusTIO2 NANOCRYSTALS-
dc.subject.keywordPlus001 FACETS-
dc.subject.keywordPlusELECTROCATALYST-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordAuthorcatalyst support-
dc.subject.keywordAuthorenhanced stability-
dc.subject.keywordAuthorhollow structures-
dc.subject.keywordAuthorPEMFCs-
dc.subject.keywordAuthorrGO/TiO2-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE