Full metadata record

DC Field Value Language
dc.contributor.authorBhange, Deu S.-
dc.contributor.authorAli, Ghulam-
dc.contributor.authorKim, Ji-Young-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorNam, Kyung-Wan-
dc.date.accessioned2024-01-20T00:04:48Z-
dc.date.available2024-01-20T00:04:48Z-
dc.date.created2021-09-03-
dc.date.issued2017-10-31-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122145-
dc.description.abstractDue to their abundance and environmentally benign nature, iron and titanium present as the most attractive potential elements for use in rechargeable sodium-ion batteries (SIBs). Accordingly, two structurally different Fe and Ti based compounds, stoichiometric NaFeTiO4 and sodium deficient NaxFexTi2-xO4 (where x = 0.9, and 0.8), are explored as anode materials for SIBs. Their structure and sodium storage capacity are systematically investigated by using combined structural and electrochemical analysis. Rietveld refinement analysis reveals that the sodium deficiency leads to the structural transformation from a single-tunnel structure (NaFeTiO4) to a zigzag-type double-tunnel structure (Na0.9Fe0.9Ti1.1O4 and Na0.8Fe0.8Ti1.2O4). The series of sodium deficient compounds bears systematic sodium ion vacancies in their structure up to 20%. Sodium deficiency in the NaxFexTi2-xO4 logically provides additional space for accommodating the excess sodium ions as such the NaxFexTi2-xO4 compounds with higher level of sodium deficiency show higher specific capacities than the stoichiometric NaFeTiO4. All the compounds exhibited very good electrochemical cycling stability, with minimal capacity loss during cycling. The present approach is a model example of improvement in the sodium, storage capacity of the anode materials by tuning the chemical composition, and could facilitate the performance improvement of known or new electrode materials for SIBs. (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectION BATTERIES-
dc.subjectINTERCALATION-
dc.subjectLITHIUM-
dc.subjectCARBONS-
dc.subjectENERGY-
dc.subjectBLACK-
dc.titleImproving the sodium storage capacity of tunnel structured NaxFexTi2-xO4 (x=1, 0.9 & 0.8) anode materials by tuning sodium deficiency-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2017.08.112-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.366, pp.115 - 122-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume366-
dc.citation.startPage115-
dc.citation.endPage122-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000413390100013-
dc.identifier.scopusid2-s2.0-85029286882-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusCARBONS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusBLACK-
dc.subject.keywordAuthorSodium ion battery-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorNaFeTiO4-
dc.subject.keywordAuthorTunnel structure-
dc.subject.keywordAuthorSynchrotron X-rays-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE