Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jae Hyeop-
dc.contributor.authorKu, Sook Hee-
dc.contributor.authorKim, Min Ju-
dc.contributor.authorLee, So Jin-
dc.contributor.authorKim, Hyun Cheol-
dc.contributor.authorKim, Kwangmeyung-
dc.contributor.authorKim, Sun Hwa-
dc.contributor.authorKwon, Ick Chan-
dc.date.accessioned2024-01-20T00:30:48Z-
dc.date.available2024-01-20T00:30:48Z-
dc.date.created2021-09-03-
dc.date.issued2017-10-10-
dc.identifier.issn0168-3659-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122179-
dc.description.abstractRNA, one of the major biological macromolecules, has been considered as an attractive building material for bottom-up fabrication of nanostructures in the past few decades due to advancements in RNA biology, RNA chemistry and RNA nanotechnology. Most recently, an isothermal enzymatic nucleic acid amplification method termed rolling circle transcription (RCT), which achieves a large-scale synthesis of RNA nanostructures, has emerged as one of fascinating techniques for RNAi-based therapies. Herein, we proposed a newly designed RCT method for synthesis of polymeric siRNA nanoflower, referred to 'RCT and annealing-generated polymeric siRNA (RAPSI)': (1) Amplification of the antisense strand of siRNA via RCT process and (2) annealing of chimeric sense strand containing 3'-terminal DNA nucleotides that provide enzyme cleavage sites. To verify its potentials in RNAi-based cancer therapy, the newly designed RAPSI nanoflower was further complexed with glycol chitosan (GC) derivatives, and systemically delivered to PC-3 xenograft tumors. The resultant RAPSI nanoparticles exhibited the improved particle stability against polyanion competition or nuclease attack. When the RAPSI nanoparticles reached to the cytoplasmic region, active mono siRNA was liberated and significantly down-regulated the expression of target VEGF gene in PC-3 cells. Excellent tumor-homing efficacy and anti-tumor effects of the RAPSI nanoparticles were further demonstrated. Overall, the proposed RCT-based polymeric siRNA nanoflower formulation can provide a new platform technology that allows further functional modifications via an advanced annealing method for systemic cancer RNAi therapy.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectGLYCOL CHITOSAN NANOPARTICLES-
dc.subjectRNA INTERFERENCE-
dc.subjectCELLULAR UPTAKE-
dc.subjectDNA-
dc.subjectCANCER-
dc.subjectSTABILITY-
dc.subjectVEGF-
dc.subjectSIZE-
dc.titleRolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery-
dc.typeArticle-
dc.identifier.doi10.1016/j.jconrel.2017.03.390-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF CONTROLLED RELEASE, v.263, pp.29 - 38-
dc.citation.titleJOURNAL OF CONTROLLED RELEASE-
dc.citation.volume263-
dc.citation.startPage29-
dc.citation.endPage38-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000411202400004-
dc.identifier.scopusid2-s2.0-85018733689-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPharmacology & Pharmacy-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.type.docTypeArticle; Proceedings Paper-
dc.subject.keywordPlusGLYCOL CHITOSAN NANOPARTICLES-
dc.subject.keywordPlusRNA INTERFERENCE-
dc.subject.keywordPlusCELLULAR UPTAKE-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusCANCER-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusVEGF-
dc.subject.keywordPlusSIZE-
dc.subject.keywordAuthorRolling circle transcription-
dc.subject.keywordAuthorRNA interference-
dc.subject.keywordAuthorVEGF-
dc.subject.keywordAuthorProstate cancer-
dc.subject.keywordAuthorGlycol chitosan nanoparticle-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE