Full metadata record

DC Field Value Language
dc.contributor.authorKim, Byoung Soo-
dc.contributor.authorLee, Kangsuk-
dc.contributor.authorKang, Seulki-
dc.contributor.authorLee, Soyeon-
dc.contributor.authorPyo, Jun Beom-
dc.contributor.authorChoi, In Suk-
dc.contributor.authorChar, Kookheon-
dc.contributor.authorPark, Jong Hyuk-
dc.contributor.authorLee, Sang-Soo-
dc.contributor.authorLee, Jonghwi-
dc.contributor.authorSon, Jeong Gon-
dc.date.accessioned2024-01-20T00:32:29Z-
dc.date.available2024-01-20T00:32:29Z-
dc.date.created2021-09-04-
dc.date.issued2017-09-21-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122268-
dc.description.abstractStretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omni-directionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g(-1) and 2.9 F cm(-2), respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable energy storage electrodes.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectSOLID-STATE SUPERCAPACITORS-
dc.subjectCAPACITIVE ENERGY-STORAGE-
dc.subjectWALLED CARBON NANOTUBES-
dc.subjectAG NANOWIRE NETWORKS-
dc.subjectHIGH-PERFORMANCE-
dc.subjectELECTROCHEMICAL CAPACITORS-
dc.subjectCOMPACT SUPERCAPACITORS-
dc.subjectPOISSONS RATIO-
dc.subjectELECTRODES-
dc.subjectFILMS-
dc.title2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors-
dc.typeArticle-
dc.identifier.doi10.1039/c7nr02869e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.9, no.35, pp.13272 - 13280-
dc.citation.titleNANOSCALE-
dc.citation.volume9-
dc.citation.number35-
dc.citation.startPage13272-
dc.citation.endPage13280-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000410659800054-
dc.identifier.scopusid2-s2.0-85029472449-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSOLID-STATE SUPERCAPACITORS-
dc.subject.keywordPlusCAPACITIVE ENERGY-STORAGE-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusAG NANOWIRE NETWORKS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusELECTROCHEMICAL CAPACITORS-
dc.subject.keywordPlusCOMPACT SUPERCAPACITORS-
dc.subject.keywordPlusPOISSONS RATIO-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorauxetic-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorstretchable-
dc.subject.keywordAuthorsupercapacitor-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE