Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Haemin-
dc.contributor.authorYu, Jaesang-
dc.contributor.authorLee, Hunsu-
dc.contributor.authorKim, G. M.-
dc.contributor.authorKim, Jae Woo-
dc.contributor.authorJung, Yong Chae-
dc.contributor.authorYang, Cheol-Min-
dc.contributor.authorYang, B. J.-
dc.date.accessioned2024-01-20T00:33:29Z-
dc.date.available2024-01-20T00:33:29Z-
dc.date.created2021-09-05-
dc.date.issued2017-09-
dc.identifier.issn0178-7675-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122320-
dc.description.abstractContinuous fiber-reinforced composites are important materials that have the highest commercialized potential in the upcoming future among existing advanced materials. Despite their wide use and value, their theoretical mechanisms have not been fully established due to the complexity of the compositions and their unrevealed failure mechanisms. This study proposes an effective three-dimensional damage modeling of a fibrous composite by combining analytical micromechanics and evolutionary computation. The interface characteristics, debonding damage, and micro-cracks are considered to be the most influential factors on the toughness and failure behaviors of composites, and a constitutive equation considering these factors was explicitly derived in accordance with the micromechanics-based ensemble volume averaged method. The optimal set of various model parameters in the analytical model were found using modified evolutionary computation that considers human-induced error. The effectiveness of the proposed formulation was validated by comparing a series of numerical simulations with experimental data from available studies.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectNANOTUBE REINFORCED COMPOSITES-
dc.subjectMATRIX COMPOSITES-
dc.subjectELASTIC-MODULI-
dc.subjectMICROMECHANICS-
dc.subjectSTRENGTH-
dc.subjectMODEL-
dc.subjectDEFORMATION-
dc.subjectSTRESS-
dc.subjectFUTURE-
dc.subjectGLASS-
dc.titleA combined analytical formulation and genetic algorithm to analyze the nonlinear damage responses of continuous fiber toughened composites-
dc.typeArticle-
dc.identifier.doi10.1007/s00466-017-1398-z-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPUTATIONAL MECHANICS, v.60, no.3, pp.393 - 408-
dc.citation.titleCOMPUTATIONAL MECHANICS-
dc.citation.volume60-
dc.citation.number3-
dc.citation.startPage393-
dc.citation.endPage408-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000413623200003-
dc.identifier.scopusid2-s2.0-85018699959-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.type.docTypeArticle-
dc.subject.keywordPlusNANOTUBE REINFORCED COMPOSITES-
dc.subject.keywordPlusMATRIX COMPOSITES-
dc.subject.keywordPlusELASTIC-MODULI-
dc.subject.keywordPlusMICROMECHANICS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusFUTURE-
dc.subject.keywordPlusGLASS-
dc.subject.keywordAuthorFiber-reinforced polymer composites-
dc.subject.keywordAuthorMicromechanics-
dc.subject.keywordAuthorGenetic algorithm-
dc.subject.keywordAuthorDamage modeling-
dc.subject.keywordAuthorFailure mechanism-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE