Maximizing energy coupling to complex plasmonic devices by injecting light into eigenchannels

Authors
Jo, YonghyeonChoi, WonjunSeo, EunsungAhn, JunmoPark, Q-HanJhon, Young MinChoi, Wonshik
Issue Date
2017-08-29
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.7
Abstract
Surface plasmon polaritons have attracted broad attention in the optoelectronics field due to their ability to merge nanoscale electronics with high-speed optical communication. As the complexity of optoelectronic devices increases to meet various needs, this integration has been hampered by the low coupling efficiency of light to plasmonic modes. Here we present a method to maximize the coupling of far-field optical waves to plasmonic waves for arbitrarily complex devices. The method consists of experimentally identifying the eigenchannels of a given nanostructure and shaping the wavefront of incident light to a particular eigenchannel that maximizes the generation of plasmonic waves. Our proposed approach increases the coupling efficiency almost four-fold with respect to the uncontrolled input. Our study will help to facilitate the integration of electronics and photonics.
Keywords
MACH-ZEHNDER INTERFEROMETER; WAVE-GUIDES; LASERS; MACH-ZEHNDER INTERFEROMETER; WAVE-GUIDES; LASERS; coupling; complex plasmonic device; eigenchannel
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/122392
DOI
10.1038/s41598-017-10148-w
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE