Full metadata record

DC Field Value Language
dc.contributor.authorLee, Young-Su-
dc.contributor.authorCho, Young Whan-
dc.date.accessioned2024-01-20T01:00:21Z-
dc.date.available2024-01-20T01:00:21Z-
dc.date.created2021-09-05-
dc.date.issued2017-08-24-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122399-
dc.description.abstractThe defect structure and the Li ion diffusion mechanism of orthorhombic LiBH4 (o-LiBH4) are studied by first-principles calculations to elucidate the Li ion transport in o-LiBH4. Two metastable Li interstitial sites are identified, and the formation energies of the Schottky and Frenkel defect pair are calculated to be 1.2-1.4 eV, the former being slightly easier to form. The energy required to form intrinsic defects is higher than that of hexagonal LiBH4 (h-LiBH4). On the other hand, the migration energy barrier of the Li vacancy or interstitial ranges from 0.1 to 0.3 eV, which is comparable to that of hLiBH(4). Therefore, the higher defect formation energy mainly accounts for the much lower Li ion conductivity of o-LiBH4. The calculated overall activation barrier for the Li ion conduction in fair agreement with the experimental activation energy. Molecular,dynamics simulation demonstrates that both the interstitial and the interstitialcy mechanisms are operative for the Li interstitial diffusion and that the interconnected interstitial sites compose a fast diffusion path. The simulation results point out that the enhancement of the carrier density via defect or interface engineering may significantly raise the ionic conductivity of o-LiBH4.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectTOTAL-ENERGY CALCULATIONS-
dc.subjectWAVE BASIS-SET-
dc.subjectNANOCONFINED LIBH4-
dc.subjectSUPERIONIC CONDUCTIVITY-
dc.subjectSOLID ELECTROLYTES-
dc.subjectBATTERIES-
dc.subjectSTORAGE-
dc.subjectLICE(BH4)(3)CL-
dc.subjectEFFICIENCY-
dc.subjectLI2B12H12-
dc.titleFast Lithium Ion Migration in Room Temperature LiBH4-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpcc.7b06328-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.121, no.33, pp.17773 - 17779-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume121-
dc.citation.number33-
dc.citation.startPage17773-
dc.citation.endPage17779-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000408598600024-
dc.identifier.scopusid2-s2.0-85028502594-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusWAVE BASIS-SET-
dc.subject.keywordPlusNANOCONFINED LIBH4-
dc.subject.keywordPlusSUPERIONIC CONDUCTIVITY-
dc.subject.keywordPlusSOLID ELECTROLYTES-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusLICE(BH4)(3)CL-
dc.subject.keywordPlusEFFICIENCY-
dc.subject.keywordPlusLI2B12H12-
dc.subject.keywordAuthorlithium borohydride-
dc.subject.keywordAuthorionic conductivity-
dc.subject.keywordAuthorfirst-principles calculation-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE