Full metadata record

DC Field Value Language
dc.contributor.authorLim, Swee Su-
dc.contributor.authorYu, Eileen Hao-
dc.contributor.authorDaud, Wan Ramli Wan-
dc.contributor.authorKim, Byung Hong-
dc.contributor.authorScott, Keith-
dc.date.accessioned2024-01-20T01:01:11Z-
dc.date.available2024-01-20T01:01:11Z-
dc.date.created2022-01-25-
dc.date.issued2017-08-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122444-
dc.description.abstractThe bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m(2) and 0.37 A/m(2) at applied potential 0 and +0.6 V, respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential, in the range from -0.5 to -1.0 V. The highest production rate was 7.4 L H-2/(m(2) cathode area)/day at -1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84 V without overloading the bioanode. (C) 2017 The Authors. Published by Elsevier Ltd.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.titleBioanode as a limiting factor to biocathode performance in microbial electrolysis cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.biortech.2017.03.127-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIORESOURCE TECHNOLOGY, v.238, pp.313 - 324-
dc.citation.titleBIORESOURCE TECHNOLOGY-
dc.citation.volume238-
dc.citation.startPage313-
dc.citation.endPage324-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000402485500039-
dc.identifier.scopusid2-s2.0-85018647178-
dc.relation.journalWebOfScienceCategoryAgricultural Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN GAS-PRODUCTION-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusGEOBACTER-SULFURREDUCENS-
dc.subject.keywordPlusELECTROCHEMICAL SYSTEMS-
dc.subject.keywordPlusGRAPHITE CATHODES-
dc.subject.keywordPlusANODE POTENTIALS-
dc.subject.keywordPlusH-2 PRODUCTION-
dc.subject.keywordPlusWASTE-WATER-
dc.subject.keywordPlusSTART-UP-
dc.subject.keywordPlusBIOFILMS-
dc.subject.keywordAuthorBiological microbial electrolysis cell-
dc.subject.keywordAuthorLimiting factor-
dc.subject.keywordAuthorApplied potential-
dc.subject.keywordAuthorBioanode-
dc.subject.keywordAuthorBiocathode-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE