Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Swee Su | - |
dc.contributor.author | Yu, Eileen Hao | - |
dc.contributor.author | Daud, Wan Ramli Wan | - |
dc.contributor.author | Kim, Byung Hong | - |
dc.contributor.author | Scott, Keith | - |
dc.date.accessioned | 2024-01-20T01:01:11Z | - |
dc.date.available | 2024-01-20T01:01:11Z | - |
dc.date.created | 2022-01-25 | - |
dc.date.issued | 2017-08 | - |
dc.identifier.issn | 0960-8524 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/122444 | - |
dc.description.abstract | The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m(2) and 0.37 A/m(2) at applied potential 0 and +0.6 V, respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential, in the range from -0.5 to -1.0 V. The highest production rate was 7.4 L H-2/(m(2) cathode area)/day at -1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as -0.84 V without overloading the bioanode. (C) 2017 The Authors. Published by Elsevier Ltd. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.title | Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.biortech.2017.03.127 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | BIORESOURCE TECHNOLOGY, v.238, pp.313 - 324 | - |
dc.citation.title | BIORESOURCE TECHNOLOGY | - |
dc.citation.volume | 238 | - |
dc.citation.startPage | 313 | - |
dc.citation.endPage | 324 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000402485500039 | - |
dc.identifier.scopusid | 2-s2.0-85018647178 | - |
dc.relation.journalWebOfScienceCategory | Agricultural Engineering | - |
dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalResearchArea | Agriculture | - |
dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HYDROGEN GAS-PRODUCTION | - |
dc.subject.keywordPlus | FUEL-CELLS | - |
dc.subject.keywordPlus | GEOBACTER-SULFURREDUCENS | - |
dc.subject.keywordPlus | ELECTROCHEMICAL SYSTEMS | - |
dc.subject.keywordPlus | GRAPHITE CATHODES | - |
dc.subject.keywordPlus | ANODE POTENTIALS | - |
dc.subject.keywordPlus | H-2 PRODUCTION | - |
dc.subject.keywordPlus | WASTE-WATER | - |
dc.subject.keywordPlus | START-UP | - |
dc.subject.keywordPlus | BIOFILMS | - |
dc.subject.keywordAuthor | Biological microbial electrolysis cell | - |
dc.subject.keywordAuthor | Limiting factor | - |
dc.subject.keywordAuthor | Applied potential | - |
dc.subject.keywordAuthor | Bioanode | - |
dc.subject.keywordAuthor | Biocathode | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.