High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer Metal Composites with Nanodispersed Metal Electrodes

Authors
Wang, Hyuck SikCho, JaehyunSong, Dae SeokJang, Jong HyunJho, Jae YoungPark, Jong Hyuk
Issue Date
2017-07-05
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.9, no.26, pp.21998 - 22005
Abstract
Ionic polymer metal composites (IPMCs) have been proposed as biomimetic actuators that are operable at low applied voltages. However, the bending strain and generating force of the IPMC actuators have generally exhibited a trade-off relationship, whereas simultaneous enhancement of both the qualities is required for their practical applications. Herein, a significant improvement in both the strain and force of the IPMC actuators is achieved by a facile approach, exploiting thickness-controlled ion-exchange membranes and nanodispersed metal electrodes. To guarantee a large generating force of the IPMC actuators, ultrathick ion-exchange membranes are prepared by stacking pre-extruded Nafion Ems. Metal electrodes with a nanodispersed structure are formed on the membranes via alcohol-assisted electroless plating, which allows increased capacitance and facilitated ion transport. The resulting actuators exhibit greatly enhanced electromechanical properties, including an approximately four times larger strain and two times larger force compared to those of actuators having the conventional structure. Moreover, the ability to lift 16 coins (a weight of 124 g) has been successfully demonstrated using ultrathick IPMC actuators, which shows great promise in realizing artificial muscles.
Keywords
ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; IPMC ACTUATORS; MEMBRANE; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; IPMC ACTUATORS; MEMBRANE; electroactive polymer; actuator; ionic polymer-metal composite; nanodispersed metal electrode; alcohol-assisted electroless plating
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/122539
DOI
10.1021/acsami.7b04779
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE