Full metadata record

DC Field Value Language
dc.contributor.authorZhao, Yakai-
dc.contributor.authorLee, Dong-Hyun-
dc.contributor.authorSeok, Moo-Young-
dc.contributor.authorLee, Jung-A-
dc.contributor.authorPhaniraj, M. P.-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorHa, Heon-Young-
dc.contributor.authorKim, Ju-Young-
dc.contributor.authorRamamurty, Upadrasta-
dc.contributor.authorJang, Jae-Il-
dc.date.accessioned2024-01-20T01:02:59Z-
dc.date.available2024-01-20T01:02:59Z-
dc.date.created2021-09-05-
dc.date.issued2017-07-01-
dc.identifier.issn1359-6462-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122544-
dc.description.abstractThe influence of hydrogen on the mechanical behavior of the CoCrFeMnNi high-entropy alloy (HEA) was examined through tensile and nanoindentation experiments on specimens hydrogenated via gaseous and electrochemical methods. Results show that the HEA's resistance to gaseous hydrogen embrittlement is better than that of two representative austenitic stainless steels, in spite of the fact that it absorbs a larger amount of hydrogen than the two steels. Reasons for this were discussed in terms of hydrogen-enhanced localized plasticity mechanism and the critical amount of hydrogen required for it These were further substantiated by additional experiments on electrochemically charged specimens. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectAUSTENITIC STAINLESS-STEELS-
dc.subjectENVIRONMENT EMBRITTLEMENT-
dc.subjectDEFORMATION-
dc.subjectEVOLUTION-
dc.subjectTITANIUM-
dc.subjectBEHAVIOR-
dc.subjectSTORAGE-
dc.subjectSTRESS-
dc.titleResistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement-
dc.typeArticle-
dc.identifier.doi10.1016/j.scriptamat.2017.03.029-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCRIPTA MATERIALIA, v.135, pp.54 - 58-
dc.citation.titleSCRIPTA MATERIALIA-
dc.citation.volume135-
dc.citation.startPage54-
dc.citation.endPage58-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000402344900013-
dc.identifier.scopusid2-s2.0-85016442064-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusAUSTENITIC STAINLESS-STEELS-
dc.subject.keywordPlusENVIRONMENT EMBRITTLEMENT-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusTITANIUM-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordAuthorHigh-entropy alloy-
dc.subject.keywordAuthorHydrogen embrittlement-
dc.subject.keywordAuthorTensile test-
dc.subject.keywordAuthorNanoindentation-
dc.subject.keywordAuthorThermal desorption spectroscopy-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE