Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Sun Young-
dc.contributor.authorWang, Jin-Young-
dc.contributor.authorKwak, Ho Seok-
dc.contributor.authorLee, Sun-Mi-
dc.contributor.authorUm, Youngsoon-
dc.contributor.authorKim, Yunje-
dc.contributor.authorSim, Sang Jun-
dc.contributor.authorChoi, Jong-il-
dc.contributor.authorWoo, Han Min-
dc.date.accessioned2024-01-20T01:03:40Z-
dc.date.available2024-01-20T01:03:40Z-
dc.date.created2021-09-05-
dc.date.issued2017-07-
dc.identifier.issn2161-5063-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122580-
dc.description.abstractThe push-and-pull strategy for metabolic engineering was successfully demonstrated in Synechococcus elongatus PCC 7942, a model photosynthetic bacterium, to produce squalene from CO2. Squalene synthase (SQS) was fused to either a key enzyme (farnesyl diphosphate synthase) of the methylerythritol phosphate pathway or the beta-subunit of phycocyanin (CpcB1). Engineered cyanobacteria with expression of a fusion CpcB1-SQS protein showed a squalene production level (7.16 +/- 0.05 mg/L/OD730) that was increased by 1.8-fold compared to that of the control strain expressing SQS alone. To increase squalene production further, the gene dosage for CpcB1.SQS protein expression was increased and the fusion protein was expressed under a strong promoter, yielding 11.98 +/- 0.49 mg/L/OD730 of squalene, representing a 3.1-fold increase compared to the control. Subsequently, the best squalene producer was cultivated in a scalable photobioreactor (6 L) with light optimization, which produced 7.08 +/- 0.5 mg/L/OD730 squalene (equivalent to 79.2 mg per g dry cell weight). Further optimization for photobioprocessing and strain development will promote the construction of a solar-to-chemical platform.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleImprovement of Squalene Production from CO2 in Synechococcus elongatus PCC 7942 by Metabolic Engineering and Scalable Production in a Photobioreactor-
dc.typeArticle-
dc.identifier.doi10.1021/acssynbio.7b00083-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Synthetic Biology, v.6, no.7, pp.1289 - 1295-
dc.citation.titleACS Synthetic Biology-
dc.citation.volume6-
dc.citation.number7-
dc.citation.startPage1289-
dc.citation.endPage1295-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000406356100020-
dc.identifier.scopusid2-s2.0-85025175891-
dc.relation.journalWebOfScienceCategoryBiochemical Research Methods-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.type.docTypeArticle-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusCYANOBACTERIA-
dc.subject.keywordPlusBIOSYNTHESIS-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusPATHWAY-
dc.subject.keywordPlusAMORPHA-4,11-DIENE-
dc.subject.keywordPlusSYNTHASE-
dc.subject.keywordPlusBIOLOGY-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordAuthorSynechococcus elongatus PCC 7942-
dc.subject.keywordAuthorprotein engineering-
dc.subject.keywordAuthormetabolic engineering-
dc.subject.keywordAuthorsqualene-
dc.subject.keywordAuthorCO2 conversion-
dc.subject.keywordAuthorscalable production-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE