Full metadata record

DC Field Value Language
dc.contributor.authorKil, Tae-Hyeon-
dc.contributor.authorKim, Sanghyeon-
dc.contributor.authorJeong, Dae-Han-
dc.contributor.authorGeum, Dae-Myeong-
dc.contributor.authorLee, Sooseok-
dc.contributor.authorJung, Sung-Jin-
dc.contributor.authorKim, Sangtae-
dc.contributor.authorPark, Chan-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorBaik, Jeong Min-
dc.contributor.authorLee, Ki-Suk-
dc.contributor.authorKim, Chang Zoo-
dc.contributor.authorChoi, Won Jun-
dc.contributor.authorBaek, Seung-Hyub-
dc.date.accessioned2024-01-20T01:03:47Z-
dc.date.available2024-01-20T01:03:47Z-
dc.date.created2021-09-05-
dc.date.issued2017-07-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122587-
dc.description.abstractA concentrating photovoltaic (CPV) cell exhibits the highest conversion efficiency among any solar cells. However, the further enhancement of the CPV efficiency is strongly limited by the heat generation at high solar concentrations. Here, we demonstrate a concentrating photovoltaic/thermoelectric hybrid generator using a single-junction, GaAs-based solar cell and a conventional thermoelectric module as a model system. Our hybrid generator gives rise to the conversion efficiency larger than the single CPV cell by similar to 3% at the solar concentration of 50 suns. Controlling thermal flow in the hybrid generator and the Peltier cooling effect is the key to achieving high efficiency. Our result provides a framework for designing a highly-efficient hybrid generator using both photo-electric and photo-thermal effects for the clean-energy production.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectTEMPERATURE-DEPENDENCE-
dc.subjectPERFORMANCE ANALYSIS-
dc.subjectSOLAR-CELLS-
dc.subjectSYSTEM-
dc.subjectFEASIBILITY-
dc.subjectDESIGN-
dc.titleA highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2017.05.023-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO ENERGY, v.37, pp.242 - 247-
dc.citation.titleNANO ENERGY-
dc.citation.volume37-
dc.citation.startPage242-
dc.citation.endPage247-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000428793000001-
dc.identifier.scopusid2-s2.0-85019396772-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTEMPERATURE-DEPENDENCE-
dc.subject.keywordPlusPERFORMANCE ANALYSIS-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusFEASIBILITY-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorPhotovoltaic-thermoelectric hybrid generator-
dc.subject.keywordAuthorConcentrating photovoltaics-
dc.subject.keywordAuthorThermoelectrics-
dc.subject.keywordAuthorWafer bonding-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE