Full metadata record

DC Field Value Language
dc.contributor.authorLee, Geunho-
dc.contributor.authorLee, Hyun Beom-
dc.contributor.authorJung, Byung Hwa-
dc.contributor.authorNam, Hojung-
dc.date.accessioned2024-01-20T01:03:52Z-
dc.date.available2024-01-20T01:03:52Z-
dc.date.created2021-09-05-
dc.date.issued2017-07-
dc.identifier.issn2211-5463-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122591-
dc.description.abstractMass spectrometry (MS) data are used to analyze biological phenomena based on chemical species. However, these data often contain unexpected duplicate records and missing values due to technical or biological factors. These 'dirty data' problems increase the difficulty of performing MS analyses because they lead to performance degradation when statistical or machine-learning tests are applied to the data. Thus, we have developed missing values preprocessor (MVP), an open-source software for preprocessing data that might include duplicate records and missing values. MVP uses the property of MS data in which identical chemical species present the same or similar values for key identifiers, such as the mass-to-charge ratio and intensity signal, and forms cliques via graph theory to process dirty data. We evaluated the validity of the MVP process via quantitative and qualitative analyses and compared the results from a statistical test that analyzed the original and MVP-applied data. This analysis showed that using MVP reduces problems associated with duplicate records and missing values. We also examined the effects of using unprocessed data in statistical tests and examined the improved statistical test results obtained with data preprocessed using MVP.-
dc.languageEnglish-
dc.publisherWILEY-
dc.subjectMULTIPLE IMPUTATION-
dc.titleMVP - an open-source preprocessor for cleaning duplicate records and missing values in mass spectrometry data-
dc.typeArticle-
dc.identifier.doi10.1002/2211-5463.12247-
dc.description.journalClass1-
dc.identifier.bibliographicCitationFEBS OPEN BIO, v.7, no.7, pp.1051 - 1059-
dc.citation.titleFEBS OPEN BIO-
dc.citation.volume7-
dc.citation.number7-
dc.citation.startPage1051-
dc.citation.endPage1059-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000404762600014-
dc.identifier.scopusid2-s2.0-85020498214-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.type.docTypeArticle-
dc.subject.keywordPlusMULTIPLE IMPUTATION-
dc.subject.keywordAuthordirty data-
dc.subject.keywordAuthorduplicate record-
dc.subject.keywordAuthormass spectrometry-
dc.subject.keywordAuthormissing value-
dc.subject.keywordAuthorMS data preprocessor-
dc.subject.keywordAuthorR package-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE