Full metadata record

DC Field Value Language
dc.contributor.authorShim, Jae Wan-
dc.date.accessioned2024-01-20T01:30:37Z-
dc.date.available2024-01-20T01:30:37Z-
dc.date.created2021-09-01-
dc.date.issued2017-06-01-
dc.identifier.issn0021-9991-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122657-
dc.description.abstractThe discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models. (C) 2017 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectNAVIER-STOKES EQUATION-
dc.subjectGAS AUTOMATA-
dc.subjectHYDRODYNAMICS-
dc.subjectSIMULATIONS-
dc.subjectDERIVATION-
dc.subjectMODELS-
dc.titleParametric lattice Boltzmann method-
dc.typeArticle-
dc.identifier.doi10.1016/j.jcp.2017.02.057-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL PHYSICS, v.338, pp.240 - 251-
dc.citation.titleJOURNAL OF COMPUTATIONAL PHYSICS-
dc.citation.volume338-
dc.citation.startPage240-
dc.citation.endPage251-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000400037800011-
dc.identifier.scopusid2-s2.0-85015633505-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusNAVIER-STOKES EQUATION-
dc.subject.keywordPlusGAS AUTOMATA-
dc.subject.keywordPlusHYDRODYNAMICS-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusDERIVATION-
dc.subject.keywordPlusMODELS-
dc.subject.keywordAuthorLattice Boltzmann method-
dc.subject.keywordAuthorNavier-Stokes equations-
dc.subject.keywordAuthorNumerical stability-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE