Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jeong-Ann-
dc.contributor.authorJung, Sung-Mok-
dc.contributor.authorYi, In-Geol-
dc.contributor.authorChoi, Jae-Woo-
dc.contributor.authorKim, Song-Bae-
dc.contributor.authorLee, Sang-Hyup-
dc.date.accessioned2024-01-20T01:31:21Z-
dc.date.available2024-01-20T01:31:21Z-
dc.date.created2021-09-04-
dc.date.issued2017-06-
dc.identifier.issn0045-6535-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122698-
dc.description.abstractMicrocystin-LR (MC-LR) is a common toxin derived from cyanobacterial blooms an effective, rapid and non-toxic method needs to be developed for its removal from drinking water treatment plants (DWTP). For an adsorption-based method, mesoporous carbon can be a promising supplemental adsorbent. The effect of mesoporous carbon (MCI, MC2, and MC3) properties and water quality parameters on the adsorption of MC-LR were investigated and the results were analyzed by kinetic, isotherm, thermodynamic, Derjaguin-Landau-Verwey-Overbeek (DLVO), and intraparticle diffusion models. MC1 was the most appropriate type for the removal of MC-LR with a maximum adsorption capacity of 35,670.49 mu g/g. Adsorption of MC-LR is a spontaneous reaction dominated by van der Waals interactions. Pore sizes of 8.5 14 nm enhance the pore diffusion of MC-LR from the surface to the mesopores of MC1. The adsorption capacity was not sensitive to changes in the pH (3.2-8.0) and the existence of organic matter (2-5 mg/L). Furthermore, the final concentration of MC-LR was below the WHO guideline level after a 10-min reaction with 20 mg/L of MC1 in the Nak-Dong River, a drinking water source. The MC-LR adsorption mainly competed with humic substances (500-1000 g/mole); however, they did not have a great effect on adsorption. (C) 2017 Published by Elsevier Ltd.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleAdsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source-
dc.typeArticle-
dc.identifier.doi10.1016/j.chemosphere.2017.02.150-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMOSPHERE, v.177, pp.15 - 23-
dc.citation.titleCHEMOSPHERE-
dc.citation.volume177-
dc.citation.startPage15-
dc.citation.endPage23-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000399266600003-
dc.identifier.scopusid2-s2.0-85014465988-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOWDERED ACTIVATED CARBON-
dc.subject.keywordPlusAQUEOUS-SOLUTIONS-
dc.subject.keywordPlusDYE ADSORPTION-
dc.subject.keywordPlusCYANOBACTERIA-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordPlusEQUILIBRIUM-
dc.subject.keywordPlusSORPTION-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusTOXINS-
dc.subject.keywordPlusACID-
dc.subject.keywordAuthorMesoporous carbon-
dc.subject.keywordAuthorAdsorption-
dc.subject.keywordAuthorMicrocystin-LR-
dc.subject.keywordAuthorPore diffusion-
dc.subject.keywordAuthorWater quality parameter-
dc.subject.keywordAuthorDrinking water source-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE