Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Mi-Sook-
dc.contributor.authorLim, Shin Gwon-
dc.contributor.authorPark, Yuwon-
dc.contributor.authorLee, Sang-Min-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorShin, Tae Joo-
dc.contributor.authorLee, Kyu Tae-
dc.date.accessioned2024-01-20T01:32:25Z-
dc.date.available2024-01-20T01:32:25Z-
dc.date.created2021-09-01-
dc.date.issued2017-05-03-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122754-
dc.description.abstractP2-type manganese-based oxide materials have received attention as promising cathode materials for sodium ion batteries because of their low cost and high capacity, but their reaction and failure mechanisms are not yet fully understood. In this study, the reaction and failure mechanisms of beta-Na-0.7[Mn1-xLix]O2+y (x = 0.02, 0.04, 0.07, and 0.25), alpha-Na0.7MnO2+y, and, beta-Na0.7MnO2+z are compared to clarify the dominant factors influencing their electrochemical performances. Using a quenching process with various amounts of a Li dopant, the Mn oxidation state in beta-Na-0.7[Mn1-x.Li-x]O2+y is carefully controlled without the inclusion of impurities. Through various in situ and ex situ analyses including X-ray diffraction, X-ray absorption near-edge structure spectroscopy, and inductively coupled plasma mass spectrometry, we clarify the dependence of (i) reaction mechanisms on disordered Li distribution in the Mn layer, (ii)" reversible capacities on the initial Mn oxidation state, (iii) redox potentials on the Jahn Teller distortion, (iv) capacity fading on phase transitions during charging and discharging, and (v) electrochemical performance on Li dopant vs Mn vacancy. Finally, we demonstrate that the optimized beta-Na-0.7[Mn1-x.Li-x]O2+y (x = 0.07) exhibits excellent electrochemical performance including a high reversible capacity of similar to 183 mA h g(-1) and stable cycle performance over 120 cycles.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectSODIUM RECHARGEABLE BATTERIES-
dc.subjectX LESS-THAN-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectSTRUCTURAL STABILITY-
dc.subjectCRYSTAL-STRUCTURE-
dc.subjectP2-TYPE-
dc.subjectINTERCALATION-
dc.subjectINSERTION-
dc.subjectELECTRODE-
dc.subjectLI-
dc.titleP2 Orthorhombic Na-0.7[Mn1-xLix]O2+y as Cathode Materials for Na-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.7b00058-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.9, no.17, pp.14758 - 14768-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume9-
dc.citation.number17-
dc.citation.startPage14758-
dc.citation.endPage14768-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000400802700023-
dc.identifier.scopusid2-s2.0-85018946983-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusSODIUM RECHARGEABLE BATTERIES-
dc.subject.keywordPlusX LESS-THAN-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusSTRUCTURAL STABILITY-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusP2-TYPE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusLI-
dc.subject.keywordAuthorsodium ion battery-
dc.subject.keywordAuthorcathode-
dc.subject.keywordAuthorlayered manganese oxide-
dc.subject.keywordAuthormechanism-
dc.subject.keywordAuthororthorhombic structure-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE