Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

Authors
Woo, SeonghoonSong, Kyung MeeHan, Hee-SungJung, Min-SeungIm, Mi-YoungLee, Ki-SukSong, Kun SooFischer, PeterHong, Jung-IlChoi, Jun WooMin, Byoung-ChulKoo, Hyun CheolChang, Joonyeon
Issue Date
2017-05
Publisher
Nature Publishing Group
Citation
Nature Communications, v.8
Abstract
Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.
Keywords
ROOM-TEMPERATURE; LATTICE
ISSN
2041-1723
URI
https://pubs.kist.re.kr/handle/201004/122808
DOI
10.1038/ncomms15573
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE