Full metadata record

DC Field Value Language
dc.contributor.authorMoon, Joon-Young-
dc.contributor.authorKim, Junhyeok-
dc.contributor.authorKo, Tae-Wook-
dc.contributor.authorKim, Minkyung-
dc.contributor.authorIturria-Medina, Yasser-
dc.contributor.authorChoi, Jee-Hyun-
dc.contributor.authorLee, Joseph-
dc.contributor.authorMashour, George A.-
dc.contributor.authorLee, UnCheol-
dc.date.accessioned2024-01-20T01:34:02Z-
dc.date.available2024-01-20T01:34:02Z-
dc.date.created2021-09-01-
dc.date.issued2017-04-20-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122840-
dc.description.abstractIdentifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectPHASE-LAG INDEX-
dc.subjectFUNCTIONAL CONNECTIVITY-
dc.subjectMODELS-
dc.subjectORGANIZATION-
dc.subjectOSCILLATIONS-
dc.subjectINFORMATION-
dc.subjectPATTERNS-
dc.subjectPREDICTS-
dc.subjectKURAMOTO-
dc.subjectAREAS-
dc.titleStructure Shapes Dynamics and Directionality in Diverse Brain Networks: Mathematical Principles and Empirical Confirmation in Three Species-
dc.typeArticle-
dc.identifier.doi10.1038/srep46606-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.7-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume7-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000399748500001-
dc.identifier.scopusid2-s2.0-85021643111-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHASE-LAG INDEX-
dc.subject.keywordPlusFUNCTIONAL CONNECTIVITY-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusORGANIZATION-
dc.subject.keywordPlusOSCILLATIONS-
dc.subject.keywordPlusINFORMATION-
dc.subject.keywordPlusPATTERNS-
dc.subject.keywordPlusPREDICTS-
dc.subject.keywordPlusKURAMOTO-
dc.subject.keywordPlusAREAS-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE