Full metadata record

DC Field Value Language
dc.contributor.authorLee, Jang Yeol-
dc.contributor.authorKim, Na Young-
dc.contributor.authorShin, Dong Yun-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorLee, Sang-Soo-
dc.contributor.authorKwon, S. Joon-
dc.contributor.authorLim, Dong-Hee-
dc.contributor.authorBong, Ki Wan-
dc.contributor.authorSon, Jeong Gon-
dc.contributor.authorKim, Jin Young-
dc.date.accessioned2024-01-20T02:02:40Z-
dc.date.available2024-01-20T02:02:40Z-
dc.date.created2021-09-01-
dc.date.issued2017-03-
dc.identifier.issn1388-0764-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123011-
dc.description.abstractTransition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe2O3) microparticles with melamine. The heat treatment leads to transformation of Fe2O3 microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E-1/2 of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm(-2) indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleNitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts-
dc.typeArticle-
dc.identifier.doi10.1007/s11051-017-3793-y-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF NANOPARTICLE RESEARCH, v.19, no.3-
dc.citation.titleJOURNAL OF NANOPARTICLE RESEARCH-
dc.citation.volume19-
dc.citation.number3-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000395625400003-
dc.identifier.scopusid2-s2.0-85014884580-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusPEM FUEL-CELL-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusMETAL-CATALYSTS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusALKALINE-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorNon-precious metal electrocatalyst-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorDoping-
dc.subject.keywordAuthorCatalyst nanomaterial-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE