Full metadata record

DC Field Value Language
dc.contributor.authorCho, Hyeongrae-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorBrela, Mateusz-
dc.contributor.authorMichalak, Artur-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorLee, Kwan-Young-
dc.date.accessioned2024-01-20T02:04:37Z-
dc.date.available2024-01-20T02:04:37Z-
dc.date.created2021-09-01-
dc.date.issued2017-02-
dc.identifier.issn0887-6266-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123119-
dc.description.abstractA methylated polybenzimidazole with an aliphatic chain in the backbone (Me-PBI-C10) was synthesized and formed into membranes. Literature suggests that alkyl chains on C2 of imidazolium ions increase their alkaline stability. While this may be true for model compounds or ions attached as a side chain, both our DFT calculations and experimental results show that Me-PBI-C10 does not withstand alkaline conditions. To increase the alkaline stability, blend membranes with PBI-OO were fabricated. A blend membrane with 50% PBI-OO showed a chloride conductivity of up to 6 mS/cm, indicating that these membranes could find use in non-alkaline applications like vanadium redox flow batteries (VRFB). The high mechanical stability (tensile strength: 70.25 +/- 14.85 MPa, Young modulus: 1.65 +/- 0.16 GPa) would be an advantage over currently used Nafion membranes. Finally, three different models were successfully applied to qualitatively predict the water uptake of Me-PBI-C10 exchanged with different anions. The results match with experimental data. (c) 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 256-265-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Inc.-
dc.titleAnion conducting methylated aliphatic PBI and its calculated properties-
dc.typeArticle-
dc.identifier.doi10.1002/polb.24267-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Polymer Science, Part B: Polymer Physics, v.55, no.3, pp.256 - 265-
dc.citation.titleJournal of Polymer Science, Part B: Polymer Physics-
dc.citation.volume55-
dc.citation.number3-
dc.citation.startPage256-
dc.citation.endPage265-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000393756700004-
dc.identifier.scopusid2-s2.0-84996553546-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusFOCK-SLATER CALCULATIONS-
dc.subject.keywordPlusTRANSITION-STATE METHOD-
dc.subject.keywordPlusEXCHANGE MEMBRANE-
dc.subject.keywordPlusREVERSE ELECTRODIALYSIS-
dc.subject.keywordPlusIMIDAZOLIUM CATIONS-
dc.subject.keywordPlusPOWER-DENSITY-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusHYDROXIDES-
dc.subject.keywordAuthoraliphatic polybenzimidazole-
dc.subject.keywordAuthorcation-anion interactions-
dc.subject.keywordAuthorcomputer modeling-
dc.subject.keywordAuthorDFT calculations-
dc.subject.keywordAuthorionomers-
dc.subject.keywordAuthormembranes-
dc.subject.keywordAuthorpolymer solvation-
dc.subject.keywordAuthorwater uptake-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE