Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Geiller, Tristan | - |
dc.contributor.author | Fattahi, Mohammad | - |
dc.contributor.author | Choi, June-Seek | - |
dc.contributor.author | Royer, Sebastien | - |
dc.date.accessioned | 2024-01-20T02:04:42Z | - |
dc.date.available | 2024-01-20T02:04:42Z | - |
dc.date.created | 2021-09-01 | - |
dc.date.issued | 2017-02 | - |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/123123 | - |
dc.description.abstract | Environmental cues affect place cells responses, but whether this information is integrated versus segregated in distinct hippocampal cell populations is unclear. Here, we show that, in mice running on a treadmill enriched with visual-tactile landmarks, place cells are more strongly controlled by landmark-associated sensory inputs in deeper regions of CA1 pyramidal layer (CA1d). Many cells in CA1d display several firing fields correlated with landmarks, mapping positions slightly before or within the landmarks. Supporting direct involvement of sensory inputs, their firing fields show instantaneous responses to landmark manipulations, persist through change of context, and encode landmark identity and saliency. In contrast, cells located superficially in the pyramidal layer have single firing fields, are context specific and respond with slow dynamics to landmark manipulations. These findings suggest parallel and anatomically segregated circuits within CA1 pyramidal layer, with variable ties to landmarks, allowing flexible representation of spatial and non-spatial information. | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.title | Place cells are more strongly tied to landmarks in deep than in superficial CA1 | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/ncomms14531 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Nature Communications, v.8 | - |
dc.citation.title | Nature Communications | - |
dc.citation.volume | 8 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000394458200001 | - |
dc.identifier.scopusid | 2-s2.0-85013378396 | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HIPPOCAMPAL PYRAMIDAL CELLS | - |
dc.subject.keywordPlus | ENTORHINAL CORTEX | - |
dc.subject.keywordPlus | MEMORY | - |
dc.subject.keywordPlus | ENSEMBLE | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | RAT | - |
dc.subject.keywordPlus | REPRESENTATIONS | - |
dc.subject.keywordPlus | ENVIRONMENTS | - |
dc.subject.keywordPlus | DISSOCIATION | - |
dc.subject.keywordPlus | ORGANIZATION | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.