Full metadata record

DC Field Value Language
dc.contributor.authorKim, So Hyun-
dc.contributor.authorIm, Sun-Kyoung-
dc.contributor.authorOh, Soo-Jin-
dc.contributor.authorJeong, Sohyeon-
dc.contributor.authorYoon, Eui-Sung-
dc.contributor.authorLee, C. Justin-
dc.contributor.authorChoi, Nakwon-
dc.contributor.authorHur, Eun-Mi-
dc.date.accessioned2024-01-20T02:30:33Z-
dc.date.available2024-01-20T02:30:33Z-
dc.date.created2021-09-01-
dc.date.issued2017-02-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123149-
dc.description.abstractIn native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3-CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleAnisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network-
dc.typeArticle-
dc.identifier.doi10.1038/ncomms14346-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.8-
dc.citation.titleNature Communications-
dc.citation.volume8-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000393296400001-
dc.identifier.scopusid2-s2.0-85011422304-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusALIGNMENT IN-VITRO-
dc.subject.keywordPlusSTEM-CELLS-
dc.subject.keywordPlusFRACTIONAL ANISOTROPY-
dc.subject.keywordPlusCOLLAGEN ALIGNMENT-
dc.subject.keywordPlusBRAIN-DEVELOPMENT-
dc.subject.keywordPlusDENDRITIC SPINES-
dc.subject.keywordPlusRADIAL GLIA-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFLOW-
dc.subject.keywordAuthorbiomaterials-
dc.subject.keywordAuthorneural circuits-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE