Full metadata record

DC Field Value Language
dc.contributor.authorChoi, Sungjun-
dc.contributor.authorSang, Byoung-In-
dc.contributor.authorHong, Jongsup-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorKim, Byung-Kook-
dc.contributor.authorKim, Hyoungchul-
dc.date.accessioned2024-01-20T02:31:05Z-
dc.date.available2024-01-20T02:31:05Z-
dc.date.created2021-09-01-
dc.date.issued2017-01-25-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/123177-
dc.description.abstractHigh-temperature chemical reactions are ubiquitous in (electro) chemical applications designed to meet the growing demands of environmental and energy protection. However, the fundamental understanding and optimization of such reactions are great challenges because they are hampered by the spontaneous, dynamic, and high-temperature conditions. Here, we investigated the roles of metal catalysts (Pd, Ni, Cu, and Ag) in the high-temperature reverse water-gas shift (RWGS) reaction using in-situ surface analyses and density functional theory (DFT) calculations. Catalysts were prepared by the deposition-precipitation method with urea hydrolysis and freeze-drying. Most metals show a maximum catalytic activity during the RWGS reaction (reaching the thermodynamic conversion limit) with formate groups as an intermediate adsorbed species, while Ag metal has limited activity with the carbonate species on its surface. According to DFT calculations, such carbonate groups result from the suppressed dissociation and adsorption of hydrogen on the Ag surface, which is in good agreement with the experimental RWGS results.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectGAS-SHIFT REACTION-
dc.subjectCARBON-DIOXIDE-
dc.subjectMETHANE SUPPRESSION-
dc.subjectCO2 CONVERSION-
dc.subjectENERGY-
dc.subjectCEO2-
dc.subjectHYDROGENATION-
dc.subjectINTERMEDIATE-
dc.subjectADSORPTION-
dc.subjectMECHANISM-
dc.titleCatalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations-
dc.typeArticle-
dc.identifier.doi10.1038/srep41207-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.7-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume7-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000392666700001-
dc.identifier.scopusid2-s2.0-85010723370-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAS-SHIFT REACTION-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusMETHANE SUPPRESSION-
dc.subject.keywordPlusCO2 CONVERSION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusCEO2-
dc.subject.keywordPlusHYDROGENATION-
dc.subject.keywordPlusINTERMEDIATE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthormetal catalysts-
dc.subject.keywordAuthorRWGS reaction-
dc.subject.keywordAuthorFT-IR-
dc.subject.keywordAuthorfirst-principles-
dc.subject.keywordAuthorCO2 conversion-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE